943

Привод ленточного транспортёра

Курсовая

Производство и промышленные технологии

Промежуточный вал (расчёт на статическую прочность). Определение требуемой мощности электродвигателя. Определение частоты вращения вала электродвигателя. Определение действительного фактического передаточного числа. Крутящий момент в поперечных сечениях валов.

Русский

2013-01-06

224.5 KB

26 чел.

Московский ордена Ленина, ордена Октябрьской Революции

и ордена Трудового Красного Знамени

государственный технический университет им. Н.Э. Баумана

Кафедра «Детали машин»

Привод ленточного транспортёра

Пояснительная записка

ДМ 313-05.00.00 ПЗ

Студент _____________ (Кулигина Е.А.)    Группа Э10-62

Руководитель проекта  ______________ (Андриенко Л.А.)

  

 2001г.


Содержание

Введение

1   Кинематический расчет привода

2   Предварительный расчет валов

3   Уточненный расчет валов

4    Проверка долговечности подшипников

5    Выбор смазки редуктора

  6   Проверка прочности шпоночного соединения

7   Расчёт соединения с натягом

8   Подбор муфты

 9   Список используемой литературы


1 Кинематический расчет.

Выбор электродвигателя.

  1.  Нахождение мощности на выходе.

 РВЫХ = Т /10 3=50000,8/10 3=4кВт

1.2 Определение общего КПД привода.

 общ = 3зуб  3подш  муфты,

где: зуб – КПД зубчатой передачи;

        подш – КПД подшипников;

              муфты – КПД муфты.

 муфты = 0,98; зуб = 0,97; подш = 0,99;

 общ = 0,973  0,993  0,98 = 0,867.

1.3 Определение требуемой мощности электродвигателя.

 

1.4 Определение частоты вращения вала электродвигателя.

      

      nвх = nв  u,

где: u = uбыстр  uтих;

Из таблицы 1.2 [1] выбраны передаточные отношения тихоходной и быстроходной передачи:

uтих = (2,5…5,6); uбыстр =8

nвх = nв  u = 38,2 (2,5…5,6) 8= 764…1711 об/мин.

Исходя из мощности, ориентировочных значений частот вращения, используя

табл. 24.9 (уч. П.Ф. Дунаев, О.П. Леликов) выбран тип электродвигателя:

АИР 132S8/720   (dвала эл.=38мм.)

1.5 Определение вращающего момента на тихоходном валу.

1.6 Определение действительного фактического передаточного числа.

 

        Uд = Uред = 18,9 

  1.  Предварительный расчет валов

Крутящий момент в поперечных сечениях  валов

Быстроходного     Tб= 54,5 Hм

Промежуточного  Tпр= 271,8 Hм

Тихоходного         Tт= 1005 Hм

Предварительные значения диаметров (мм) различных участков стальных валов редуктора определяют по формулам:

             Для быстроходного:   

                                                   

                                                   

             Для промежуточного: 

                                                   

                                                   

                                                    

             Для тихоходного:        

                                                   

                                                   

Выбираем шариковые радиальные однорядные подшипники лёгкой серии.

Для быстроходного вала:  208   d=40мм,   D=80мм,  В=18мм,  r=2мм;

Для промежуточного:        207   d=35мм,   D=72мм,  В=17мм,  r=2мм;

                                            210   d=50мм,   D=90мм,  В=20мм,  r=2мм;

Для тихоходного:               214   d=70мм,   D=125мм,  В=24мм,  r=2,5мм;

  1.  
    Уточнённый расчёт валов.

3.1 Расчёт быстроходного вала.

Ft=2036 Н; Fr=755 Н; Fa=400 Н; Т=55 Н·м

Fк=Сp·Δ=1320·0,1=132 Н;  

Находим реакции опор А и Б:

Реакции опор от действия консольной нагрузки

Нормальные и касательные напряжения при действии максимальных нагрузок:

;                 ;

-суммарный изгибающий момент, где -коэффициент перегрузки(для асинхронных двигателей =2,2 );

-крутящий момент.

-осевая сила;

-момент сопротивления сечения вала;

-площадь поперечного сечения;

-момент сопротивления сечения вала;

Так как , то вал выдерживает заданную нагрузку.


3.2 Промежуточный вал (расчёт на статическую прочность).

Изгибающий момент от осевых сил:

Находим реакции опор А и Б:

Определяем нормальные и касательные напряжения при действии максимальных нагрузок:             

-суммарный изгибающий момент, где - коэффициент перегрузки(для асинхронных двигателей =2,2 ).

-осевая сила;

-момент сопротивления сечения вала;

-площадь поперечного сечения;

                   

-крутящий момент;

-момент сопротивления сечения вала;

Так как , то вал выдерживает заданную нагрузку.
3.3 Тихоходный вал (расчёт на статическую прочность).

Ft=7946 Н; Fr=2938 Н; Fa= 1421Н; Т=1005 Н·м

Fк=Сp·Δ=5400·0,1=540 Н;

Находим реакции опор А и Б:

Определяем нормальные и касательные напряжения при действии максимальных нагрузок:

- суммарный изгибающий момент, где -коэффициент перегрузки (для асинхронных двигателей =2,2 ).

-осевая сила;

-момент сопротивления сечения вала;

-площадь поперечного сечения;

-крутящий момент;

-момент сопротивления сечения вала;

Так как , то вал выдерживает заданную нагрузку.

Расчёт на сопротивление усталости:

Вычислим коэффициент запаса прочности S для опасного сечения О.О.

, [S]=1.5-2.5-допустимое значение коэф.  Запаса прочности.

;  

;  

-коэффициенты снижения

     предела выносливости;

-эффективные коэффициенты концентрации напряжений;

-коэффициенты влияния абсолютных размеров поперечного сечения;

-коэффициенты влияния качества поверхности;

-коэффициент влияния поверхностного упрочнения;

;      


3.4 Приводной вал (расчёт на статическую прочность).


Fr
=0; Ft=T/Rбар=5025Н; Fa=0; Fк=0; Т=1005 Н ·м

Находим реакции опор А и Б:

Определяем нормальные и касательные напряжения при действии максимальных нагрузок:

;                       ;

-суммарный изгибающий момент, где -коэффициент перегрузки(для асинхронных двигателей =2,2 ).

-осевая сила;

-момент сопротивления сечения вала;

-площадь поперечного сечения;

-крутящий момент;

-момент сопротивления сечения вала;

Так как , то вал выдерживает заданную нагрузку.


4 Расчёт подшипников на долговечность.

Быстроходный вал: Подшипники шариковые однорядные лёгкой серии

208: d=40мм, D=80мм, В=18мм, Сor=17.8 кН, Сr=32 кН.

V=1.0 – при вращении внутреннего кольца подшипника

              

Данный подшипник годен, т.к. расчётный ресурс больше требуемого.

Промежуточный вал: Подшипники шариковые однорядные лёгкой серии

210: d=50мм, D=90мм, В=20мм, Сor=35,1 кН, Сr=19,8 кН.

Расчёт ведётся по наиболее нагруженному подшипнику.

V=1.0 – при вращении внутреннего кольца подшипника

              

Данный подшипник годен, т.к. расчётный ресурс больше требуемого.

Тихоходный вал: Подшипники шариковые однорядные лёгкой серии

214: d=70мм, D=125мм, В=24мм, Сor=37,5 кН, Сr=61,8 кН.

V=1.0 – при вращении внутреннего кольца подшипника

              

Данный подшипник годен, т.к. расчётный ресурс больше требуемого.

Приводной вал: Подшипники радиальные сферические двухрядные

1215: d=75мм, D=130мм, В=25мм, Сor=21,6 кН, Сr=39 кН.

V=1.0 – при вращении внутреннего кольца подшипника

              

Данный подшипник годен, т.к. расчётный ресурс больше требуемого.


5 Выбор смазки редуктора

Для уменьшения потерь мощности на трение и снижения интенсивности износа трущихся поверхностей, а также для предохранения их от заедания, задиров, коррозии и лучшего отвода теплоты трущиеся поверхности деталей должны иметь надежную смазку.

В настоящее время в машиностроении для смазывания передач широко применяют картерную систему. В корпус редуктора или коробки передач

заливают масло так, чтобы венцы колес были в него погружены. При их вращении масло увлекается зубьями, разбрызгивается, попадает на внутренние стенки корпуса, откуда стекает в нижнюю его часть. Внутри корпуса образуется взвесь частиц масла в воздухе, которая покрывает поверхность расположенных внутри корпуса деталей.

Картерную смазку применяют при окружной скорости зубчатых колес и червяков от 0,3 до 12,5 м/с. При более высоких скоростях масло сбрасывается с зубьев центробежной силой и зацепление работает при недостаточной смазке. Кроме того, заметно увеличиваются потери мощности на перемешивание масла и повышается его температура.

Выбор смазочного материала основан на опыте эксплуатации машин. Принцип назначения сорта масла следующий: чем выше окружная скорость колеса, тем меньше должна быть вязкость масла, чем выше контактные давления в зубьях, тем большей вязкостью должно обладать масло. Поэтому требуемую вязкость масла определяют в зависимости от контактного напряжения и окружной скорости колес. Предварительно определяют окружную скорость, затем по скорости и контактным напряжениям находят требуемую кинематическую вязкость и марку масла.

По табл. 11.1 и 11.2 (П.Ф.Дунаев, О.П.Лелиликов) выбираем масло

И-Г-А-32 ТУ38-1001451-78.

В соосных редукторах при расположении валов в горизонтальной плоскости в масло погружают колеса быстроходной и тихоходной ступеней. Если глубина погружения колеса окажется чрезмерной, то снижают уровень масла и устанавливают специальное смазочное колесо.

Hmax=120мм, Hmin=70мм.

6 Проверка прочности шпоночного соединения

Все шпонки редуктора призматические со скругленными  торцами, размеры длины, ширины, высоты, соответствуют ГОСТ 23360-80. Материал шпонок – сталь 45 нормализованная. Все шпонки проверяются на смятие из условия прочности по формуле:

Допускаемое напряжение смятия [см]=200МПа

Быстроходный вал: 54,5 Н·м;

Выходной конец вала =Ø30мм;  b·h·l =16·10·36;

Промежуточный вал: 271,8 Н·м;

Диаметр вала: Ø45мм;  b·h·l =22·14·36;

Тихоходный вал: 1005 Н·м;

Выходной конец вала: Ø60мм;  b·h·l =32·18·50;

7 Расчёт соединения с натягом

            

Т=1005Н·м; Fa=1421.4Н; Ft=7946.2Н;

Вал-Ст45,

Шестерня-Ст40X,

1 Условие работоспособности

к - коэффициент по сцеплению;

-необходимое давление для обеспечения работоспособности;

Это давление будет создаваться натягом, который мы рассчитываем по формуле Ламе:

                        µ=0,3

                      

Стандартную посадку подбираем по измеренному натягу, который будет отличаться от расчётного на величину  

                              

Проверим посадко по условию прочности:

посадка пригодна. 

8 Подбор муфты

Муфта упругая втулочно-пальцевая по ГОСТ 21424–75.

Отличается простотой конструкции и удобством монтажа и демонтажа. Обычно применяется в передачах от электродвигателя с малыми крутящими моментами. Упругими элементами здесь служат гофрированные резиновые втулки.Из-за сравнительно небольшой толщины втулок муфты обладают малой податливостью и применяются в основном для компенсации несоосносги валов в небольших пределах (3 мм; 0.10…0,15 мм; 0,6/100 мм/мм ).

Материал полумуфт – чугун СЧ20.

Материал пальцев – сталь 45.

Для проверки прочности рассчитывают пальцы на изгиб, а резину – по напряжениям смятия на поверхности соприкасания втулок с пальцами. При этом полагают, что все пальцы нагружены одинаково, а напряжения смятия распределены равномерно по длине втулки:

где z – число пальцев, z = 8. Рекомендуют принимать  = 1,8...2 МПа.

Тогда  

Пальцы муфты изготовляют из стали 45 и рассчитывают на изгиб:

Допускаемые напряжения изгиба , где - предел текучести материала пальцев, МПа. Зазор между полумуфтами  С=6мм


9
Список  используемой литературы

  1.  М.Н. Иванов. Детали машин. М.: «Машиностроение», 1991.
  2.  П.Ф. Дунаев, О.П.Леликов – Конструирование узлов и деталей машин.
    М.: «Высшая школа», 1985.
  3.  Д.Н. Решетов – Детали машин. Атлас конструкций в двух частях. М.: «Машиностроение», 1992.


 

А также другие работы, которые могут Вас заинтересовать

69300. Базові поняття процесів і потоків 39.5 KB
  Однозначна відповідність між програмою і процесом встановлюється тільки в конкретний момент часу: один процес у різний час може виконувати код декількох програм код однієї програми можуть виконувати декілька процесів одночасно.
69301. Багатопотоковість та її реалізація 50 KB
  Багатопотокове застосування може реалізувати цей вид паралелізму через створення нових потоків які виконуватимуться коли поточний потік очікує операції введеннявиведення. При цьому використання потоків дає можливість організувати паралельне обслуговування запитів...
69302. Стани процесів та потоків 35.5 KB
  Перехід потоків між станами очікування і готовності реалізовано на основі планування задач або планування потоків. Під час планування потоків визначають який з потоків треба відновити після завершення операції введення-виведення як організувати очікування подій у системі.
69303. Створення і завершення процесів і потоків 50.5 KB
  Створення процесів Базові принципи створення процесів Процеси можуть створюватися ядром системи під час її ініціалізації. Таке створення процесів однак є винятком а не правилом. Найчастіше процеси створюються під час виконання інших процесів.
69304. Керування процесами у Windows XP 98.5 KB
  Поняття процесу й потоку у Windows XP чітко розмежовані. Процеси в даній системі визначають «поле діяльності» для потоків, які виконуються в їхньому адресному просторі. Серед ресурсів, з якими процес може працювати прямо, відсутній процесор - він доступний тільки потокам цього процесу.
69305. Загальні принципи планування процесів та потоків 47.5 KB
  Можливість паралельного виконання потоків залежить від кількості доступних процесорів. Якщо процесор один, паралельне виконання неможливе принципово (у кожен момент часу може виконуватися тільки один потік).
69306. Види міжпроцесової взаємодії 33 KB
  Для потоків різних процесів питання забезпечення синхронізації теж є актуальними, але вони в більшості випадків не ґрунтуються на понятті спільно використовуваних даних (такі дані за замовчуванням для процесів відсутні).
69307. Базові механізми міжпроцесової взаємодії 67 KB
  Технології передавання повідомлень У цьому розділі розглянемо особливості організації взаємодії між потоками різних процесів. Основи передавання повідомлень Усі методи взаємодії які було розглянуто дотепер ґрунтуються на читанні й записуванні...
69308. Основи технології віртуальної пам’яті 75.5 KB
  Віртуальна пам’ять — це технологія, в якій вводиться рівень додаткових перетворень між адресами пам’яті, використовуваних процесом, і адресами фізичної пам’яті комп’ютера. Такі перетворення мають забезпечувати захист пам’яті та відсутність прив’язання процесу до адрес фізичної пам’яті.