943

Привод ленточного транспортёра

Курсовая

Производство и промышленные технологии

Промежуточный вал (расчёт на статическую прочность). Определение требуемой мощности электродвигателя. Определение частоты вращения вала электродвигателя. Определение действительного фактического передаточного числа. Крутящий момент в поперечных сечениях валов.

Русский

2013-01-06

224.5 KB

26 чел.

Московский ордена Ленина, ордена Октябрьской Революции

и ордена Трудового Красного Знамени

государственный технический университет им. Н.Э. Баумана

Кафедра «Детали машин»

Привод ленточного транспортёра

Пояснительная записка

ДМ 313-05.00.00 ПЗ

Студент _____________ (Кулигина Е.А.)    Группа Э10-62

Руководитель проекта  ______________ (Андриенко Л.А.)

  

 2001г.


Содержание

Введение

1   Кинематический расчет привода

2   Предварительный расчет валов

3   Уточненный расчет валов

4    Проверка долговечности подшипников

5    Выбор смазки редуктора

  6   Проверка прочности шпоночного соединения

7   Расчёт соединения с натягом

8   Подбор муфты

 9   Список используемой литературы


1 Кинематический расчет.

Выбор электродвигателя.

  1.  Нахождение мощности на выходе.

 РВЫХ = Т /10 3=50000,8/10 3=4кВт

1.2 Определение общего КПД привода.

 общ = 3зуб  3подш  муфты,

где: зуб – КПД зубчатой передачи;

        подш – КПД подшипников;

              муфты – КПД муфты.

 муфты = 0,98; зуб = 0,97; подш = 0,99;

 общ = 0,973  0,993  0,98 = 0,867.

1.3 Определение требуемой мощности электродвигателя.

 

1.4 Определение частоты вращения вала электродвигателя.

      

      nвх = nв  u,

где: u = uбыстр  uтих;

Из таблицы 1.2 [1] выбраны передаточные отношения тихоходной и быстроходной передачи:

uтих = (2,5…5,6); uбыстр =8

nвх = nв  u = 38,2 (2,5…5,6) 8= 764…1711 об/мин.

Исходя из мощности, ориентировочных значений частот вращения, используя

табл. 24.9 (уч. П.Ф. Дунаев, О.П. Леликов) выбран тип электродвигателя:

АИР 132S8/720   (dвала эл.=38мм.)

1.5 Определение вращающего момента на тихоходном валу.

1.6 Определение действительного фактического передаточного числа.

 

        Uд = Uред = 18,9 

  1.  Предварительный расчет валов

Крутящий момент в поперечных сечениях  валов

Быстроходного     Tб= 54,5 Hм

Промежуточного  Tпр= 271,8 Hм

Тихоходного         Tт= 1005 Hм

Предварительные значения диаметров (мм) различных участков стальных валов редуктора определяют по формулам:

             Для быстроходного:   

                                                   

                                                   

             Для промежуточного: 

                                                   

                                                   

                                                    

             Для тихоходного:        

                                                   

                                                   

Выбираем шариковые радиальные однорядные подшипники лёгкой серии.

Для быстроходного вала:  208   d=40мм,   D=80мм,  В=18мм,  r=2мм;

Для промежуточного:        207   d=35мм,   D=72мм,  В=17мм,  r=2мм;

                                            210   d=50мм,   D=90мм,  В=20мм,  r=2мм;

Для тихоходного:               214   d=70мм,   D=125мм,  В=24мм,  r=2,5мм;

  1.  
    Уточнённый расчёт валов.

3.1 Расчёт быстроходного вала.

Ft=2036 Н; Fr=755 Н; Fa=400 Н; Т=55 Н·м

Fк=Сp·Δ=1320·0,1=132 Н;  

Находим реакции опор А и Б:

Реакции опор от действия консольной нагрузки

Нормальные и касательные напряжения при действии максимальных нагрузок:

;                 ;

-суммарный изгибающий момент, где -коэффициент перегрузки(для асинхронных двигателей =2,2 );

-крутящий момент.

-осевая сила;

-момент сопротивления сечения вала;

-площадь поперечного сечения;

-момент сопротивления сечения вала;

Так как , то вал выдерживает заданную нагрузку.


3.2 Промежуточный вал (расчёт на статическую прочность).

Изгибающий момент от осевых сил:

Находим реакции опор А и Б:

Определяем нормальные и касательные напряжения при действии максимальных нагрузок:             

-суммарный изгибающий момент, где - коэффициент перегрузки(для асинхронных двигателей =2,2 ).

-осевая сила;

-момент сопротивления сечения вала;

-площадь поперечного сечения;

                   

-крутящий момент;

-момент сопротивления сечения вала;

Так как , то вал выдерживает заданную нагрузку.
3.3 Тихоходный вал (расчёт на статическую прочность).

Ft=7946 Н; Fr=2938 Н; Fa= 1421Н; Т=1005 Н·м

Fк=Сp·Δ=5400·0,1=540 Н;

Находим реакции опор А и Б:

Определяем нормальные и касательные напряжения при действии максимальных нагрузок:

- суммарный изгибающий момент, где -коэффициент перегрузки (для асинхронных двигателей =2,2 ).

-осевая сила;

-момент сопротивления сечения вала;

-площадь поперечного сечения;

-крутящий момент;

-момент сопротивления сечения вала;

Так как , то вал выдерживает заданную нагрузку.

Расчёт на сопротивление усталости:

Вычислим коэффициент запаса прочности S для опасного сечения О.О.

, [S]=1.5-2.5-допустимое значение коэф.  Запаса прочности.

;  

;  

-коэффициенты снижения

     предела выносливости;

-эффективные коэффициенты концентрации напряжений;

-коэффициенты влияния абсолютных размеров поперечного сечения;

-коэффициенты влияния качества поверхности;

-коэффициент влияния поверхностного упрочнения;

;      


3.4 Приводной вал (расчёт на статическую прочность).


Fr
=0; Ft=T/Rбар=5025Н; Fa=0; Fк=0; Т=1005 Н ·м

Находим реакции опор А и Б:

Определяем нормальные и касательные напряжения при действии максимальных нагрузок:

;                       ;

-суммарный изгибающий момент, где -коэффициент перегрузки(для асинхронных двигателей =2,2 ).

-осевая сила;

-момент сопротивления сечения вала;

-площадь поперечного сечения;

-крутящий момент;

-момент сопротивления сечения вала;

Так как , то вал выдерживает заданную нагрузку.


4 Расчёт подшипников на долговечность.

Быстроходный вал: Подшипники шариковые однорядные лёгкой серии

208: d=40мм, D=80мм, В=18мм, Сor=17.8 кН, Сr=32 кН.

V=1.0 – при вращении внутреннего кольца подшипника

              

Данный подшипник годен, т.к. расчётный ресурс больше требуемого.

Промежуточный вал: Подшипники шариковые однорядные лёгкой серии

210: d=50мм, D=90мм, В=20мм, Сor=35,1 кН, Сr=19,8 кН.

Расчёт ведётся по наиболее нагруженному подшипнику.

V=1.0 – при вращении внутреннего кольца подшипника

              

Данный подшипник годен, т.к. расчётный ресурс больше требуемого.

Тихоходный вал: Подшипники шариковые однорядные лёгкой серии

214: d=70мм, D=125мм, В=24мм, Сor=37,5 кН, Сr=61,8 кН.

V=1.0 – при вращении внутреннего кольца подшипника

              

Данный подшипник годен, т.к. расчётный ресурс больше требуемого.

Приводной вал: Подшипники радиальные сферические двухрядные

1215: d=75мм, D=130мм, В=25мм, Сor=21,6 кН, Сr=39 кН.

V=1.0 – при вращении внутреннего кольца подшипника

              

Данный подшипник годен, т.к. расчётный ресурс больше требуемого.


5 Выбор смазки редуктора

Для уменьшения потерь мощности на трение и снижения интенсивности износа трущихся поверхностей, а также для предохранения их от заедания, задиров, коррозии и лучшего отвода теплоты трущиеся поверхности деталей должны иметь надежную смазку.

В настоящее время в машиностроении для смазывания передач широко применяют картерную систему. В корпус редуктора или коробки передач

заливают масло так, чтобы венцы колес были в него погружены. При их вращении масло увлекается зубьями, разбрызгивается, попадает на внутренние стенки корпуса, откуда стекает в нижнюю его часть. Внутри корпуса образуется взвесь частиц масла в воздухе, которая покрывает поверхность расположенных внутри корпуса деталей.

Картерную смазку применяют при окружной скорости зубчатых колес и червяков от 0,3 до 12,5 м/с. При более высоких скоростях масло сбрасывается с зубьев центробежной силой и зацепление работает при недостаточной смазке. Кроме того, заметно увеличиваются потери мощности на перемешивание масла и повышается его температура.

Выбор смазочного материала основан на опыте эксплуатации машин. Принцип назначения сорта масла следующий: чем выше окружная скорость колеса, тем меньше должна быть вязкость масла, чем выше контактные давления в зубьях, тем большей вязкостью должно обладать масло. Поэтому требуемую вязкость масла определяют в зависимости от контактного напряжения и окружной скорости колес. Предварительно определяют окружную скорость, затем по скорости и контактным напряжениям находят требуемую кинематическую вязкость и марку масла.

По табл. 11.1 и 11.2 (П.Ф.Дунаев, О.П.Лелиликов) выбираем масло

И-Г-А-32 ТУ38-1001451-78.

В соосных редукторах при расположении валов в горизонтальной плоскости в масло погружают колеса быстроходной и тихоходной ступеней. Если глубина погружения колеса окажется чрезмерной, то снижают уровень масла и устанавливают специальное смазочное колесо.

Hmax=120мм, Hmin=70мм.

6 Проверка прочности шпоночного соединения

Все шпонки редуктора призматические со скругленными  торцами, размеры длины, ширины, высоты, соответствуют ГОСТ 23360-80. Материал шпонок – сталь 45 нормализованная. Все шпонки проверяются на смятие из условия прочности по формуле:

Допускаемое напряжение смятия [см]=200МПа

Быстроходный вал: 54,5 Н·м;

Выходной конец вала =Ø30мм;  b·h·l =16·10·36;

Промежуточный вал: 271,8 Н·м;

Диаметр вала: Ø45мм;  b·h·l =22·14·36;

Тихоходный вал: 1005 Н·м;

Выходной конец вала: Ø60мм;  b·h·l =32·18·50;

7 Расчёт соединения с натягом

            

Т=1005Н·м; Fa=1421.4Н; Ft=7946.2Н;

Вал-Ст45,

Шестерня-Ст40X,

1 Условие работоспособности

к - коэффициент по сцеплению;

-необходимое давление для обеспечения работоспособности;

Это давление будет создаваться натягом, который мы рассчитываем по формуле Ламе:

                        µ=0,3

                      

Стандартную посадку подбираем по измеренному натягу, который будет отличаться от расчётного на величину  

                              

Проверим посадко по условию прочности:

посадка пригодна. 

8 Подбор муфты

Муфта упругая втулочно-пальцевая по ГОСТ 21424–75.

Отличается простотой конструкции и удобством монтажа и демонтажа. Обычно применяется в передачах от электродвигателя с малыми крутящими моментами. Упругими элементами здесь служат гофрированные резиновые втулки.Из-за сравнительно небольшой толщины втулок муфты обладают малой податливостью и применяются в основном для компенсации несоосносги валов в небольших пределах (3 мм; 0.10…0,15 мм; 0,6/100 мм/мм ).

Материал полумуфт – чугун СЧ20.

Материал пальцев – сталь 45.

Для проверки прочности рассчитывают пальцы на изгиб, а резину – по напряжениям смятия на поверхности соприкасания втулок с пальцами. При этом полагают, что все пальцы нагружены одинаково, а напряжения смятия распределены равномерно по длине втулки:

где z – число пальцев, z = 8. Рекомендуют принимать  = 1,8...2 МПа.

Тогда  

Пальцы муфты изготовляют из стали 45 и рассчитывают на изгиб:

Допускаемые напряжения изгиба , где - предел текучести материала пальцев, МПа. Зазор между полумуфтами  С=6мм


9
Список  используемой литературы

  1.  М.Н. Иванов. Детали машин. М.: «Машиностроение», 1991.
  2.  П.Ф. Дунаев, О.П.Леликов – Конструирование узлов и деталей машин.
    М.: «Высшая школа», 1985.
  3.  Д.Н. Решетов – Детали машин. Атлас конструкций в двух частях. М.: «Машиностроение», 1992.


 

А также другие работы, которые могут Вас заинтересовать

84765. Требования к организации компьютерных сетей 439.39 KB
  Открытость возможность добавления в сеть новых компонентов узлов и каналов связи средств обработки данных без изменения существующих технических и программных средств; 2 гибкость сохранение работоспособности при изменении структуры сети в результате сбоев и отказов отдельных...
84766. Сетевые топологии 697.36 KB
  Следует различать физическую и логическую топологию сети. Физическая структурная топология отображает структурную взаимосвязь узлов сети. Логическая функциональная топология определяется функциональной взаимосвязью узлов сети то есть отображает последовательность передачи данных между узлами сети.
84767. Маршрутизация 495.88 KB
  Маршрутизация одна из основных функций компьютерной сети определяющая эффективность передачи данных. Проблема маршрутизации в компьютерных сетях аналогична проблеме организации автомобильного движения по улицам города и состоит в выборе в каждом узле сети направления передачи данных выходного...
84768. СРЕДСТВА ТЕЛЕКОММУНИКАЦИЙ 599.62 KB
  Для передачи электрических и оптических сигналов применяются электрические ЭЛС и волоконно-оптические ВОЛС линии связи соответственно. Передача электромагнитных сигналов осуществляется через радиолинии РЛС и спутниковые линии связи СЛС.
84769. Модуляция и кодирование данных 654.93 KB
  На основе непрерывного аналогового высокочастотного синусоидального сигнала называемого несущей аналоговая модуляция; на основе дискретного цифрового сигнала в виде импульсов импульсная или цифровая модуляция. Процесс преобразования дискретных данных представляемых дискретными первичными сигналами...
84770. Кабельные линии связи. Классификация кабельных линий связи 692.46 KB
  Классификация кабельных линий связи При организации компьютерных сетей широко используются кабельные линии связи. Кабельная линия связи КЛС линия связи состоящая из кабеля кабельной арматуры и кабельных сооружений туннели колодцы распределительные шкафы кабельные столбы.
84771. Телекоммуникационные сети. Классификация телекоммуникационных сетей 678.02 KB
  В зависимости от вида передаваемых данных телекоммуникационные сети делятся на: аналоговые сети; цифровые сети. К современным телекоммуникационным сетям предъявляются два основных требования: интеграция возможность передачи в сети данных разных типов неоднородного трафика предъявляющих разные...
84772. Суффикс. Представление о «суффиксе» 41 KB
  Организовать наблюдение за влиянием суффикса на значение слова. Познавательные: извлекать информацию критически оценивать понимать информацию в разных формах схемы модели ориентироваться в своей системе знаний отвечать на вопросы преобразовывать информацию проводить анализ сравнение...
84773. Кодирование и обработка звуковой информации 61.5 KB
  Цель: знакомство учащихся со звуковой информацией, способами кодирования и обработки звуковой информации в компьютере. Познавательные: осмыслить и усвоить принципы двоичного кодирования при оцифровке звука, формировать умения оценивать числовые параметры информационных объектов.