94326

Перетворення сталі при охолодженні

Доклад

Производство и промышленные технологии

В результаті охолодження сталі з дуже великою швидкістю і перетворення узаліза в азалізо без змін концентрації вуглецю бездифузійний процес утвориться структура загартованої сталі мартенсит. Мартенситне перетворення здійснюється шляхом орієнтованого переміщення атомів основних кристалічних решіток що призводить до перебудови...

Украинкский

2015-09-11

17.67 KB

0 чел.

Перетворення сталі при охолодженні.

Якщо нагріту до аустенітного стану сталь охолоджувати, то аустеніт буде перетворюватися з утворенням різних мікроструктур. Порівняно невисокі швидкості охолодження призводять до утворення ферито-цементитних сумішей, більші швидкості — до утворення пересичених твердих розчинів. При цьому властивості сталі будуть істотно розрізнятись між собою.

В результаті охолодження сталі з дуже великою швидкістю і перетворення у-заліза в а-залізо без змін концентрації вуглецю (бездифузійний процес) утвориться структура загартованої сталі мартенсит.

Мартенсит це кристалічна структура твердого пересиченого розчину проникнення вуглецю в а-залізі. Значне пересичення твердого розчину вуглецем створює більші внутрішні напруження і призводить до одержання центрованих тетрагональних решіток з параметрами а и с (рис. 3.6), де атом вуглецю перебуває в центрі грані основи тетрагональної призми. Відношення с/а характеризує ступінь тетрагональності мартенситу. Параметри а й с тісно пов'язані із вмістом вуглецю в мартенситі.

Мартенситне перетворення здійснюється шляхом орієнтованого переміщення атомів основних кристалічних решіток, що призводить до перебудови гранецентрованої решітки у-заліза в об'ємноцентровану а-заліза. Воно, як і ферито-перлітне перетворення, є фазовим і підкоряється всім законам фазового перетворення. Причиною мартенситного, як і фазового перетворення, є прагнення системи (аустеніту), що має більшу вільну енергію, перейти до системи (мартенситу), що має менше значення вільної енергії (див. рис. 3.1) в області температур перетворення від точки Мп до точки Мк(див. рис. 3.7). У цих умовах переміщення атомів дуже ускладнюється і процес стає бездифу-зійним. Однак для здійснення мартенситного перетворення в сталі її охолодження необхідно проводити зі швидкістю не нижче критичної. Критична швидкість гартування Ук — це найменша швидкість переохолодження аустеніту в зону мартенситного перетворення сталі, при якій не можуть відбуватися дифузійні процеси, а перетворення іде з утворенням тільки мартенситної структури. Ця швидкість для кожної марки сталі різна. Вона визначається за діаграмою ізотермічного перетворення аустеніту.

На величину критичної швидкості впливає, головним чином, хімічний склад аустеніту (рис. 3.8), однорідність системи й розмір аустенітних зерен.

Легуючі елементи, що збільшують стійкість переохолодженого аустеніту, а також збільшення однорідності системи й розміру зерна аустеніту знижують критичну швидкість охолодження сталі.

Карбіди або неметалічні включення (сульфіди), які зменшують стійкість аустеніту, сприяють збільшенню критичної швидкості охолодження.

Таким чином, перетворення аустеніту в мартенсит має ряд особливостей, основними з яких є наступні:

а) перебудова решітки Реу ГЦК у решітку Реа ОЦК відбувається за зсувовим механізмом без виділення вуглецю із решіток а-заліза;

б) мартенситне перетворення протікає в інтервалі температур Мп і Мк, які залежать від вмісту вуглецю в сталі;

в) у точці Мк перетворення практично зупиняється і не доходить до кінця, що призводить до того, що в загартованій сталі крім мартенситу зберігається залишковий аустеніт;

г) дуже високі швидкості росту (до 1000 м/с) мартенситних кристалів;

д) необоротність мартенситного перетворення (М—при нагріванні не від бувається), тому що нагрівання мартенситу приводить до утворення ферито- цементитних сумішей;

є) структура мартенситу має характерну голчасту будову, однак голки являють собою поперечний переріз пластин;

ж) величина мартенситних кристалів залежить від величини зерна аустеніту: із дрібнозернистого аустеніту утвориться дрібноголчастий мартенсит, із грубозернистого крупноголчастий.

Залишковий аустеніт у результаті релаксації напруг піддається стабілізації, тобто стає більш стійким у порівнянні з первісним станом. У цьому випадку для повного перетворення аустеніту в мартенсит необхідно сталь піддати охолодженню в області мінусових температур, тобто піддати обробці холодом.

Мартенсит має високу твердість і міцність, низьку пластичність й у порівнянні з іншими структурами, має найбільший питомий об'єм.

Висока твердість мартенситу обумовлюється наявністю в а-решітках великої кількості дислокацій й інших дефектів кристалічної будови.

Низька пластичність, як вважають, пов'язана з утворенням атмосфер Коттрелла з атомів вуглецю на дефектах решітки мартенситу.

Збільшення питомого об'єму мартенситу викликано перенесенням твердого а-розчину вуглецем. Це призводить до появи більших внутрішніх напружень, які є причиною деформації загартованих деталей і появи в них тріщин.


 

А также другие работы, которые могут Вас заинтересовать

11437. РЕАКЦИИ ОКИСЛЕНИЯ - ВОССТАНОВЛЕНИЯ 97.5 KB
  ЛАБОРАТОРНАЯ РАБОТА №8. РЕАКЦИИ ОКИСЛЕНИЯ ВОССТАНОВЛЕНИЯ Введение. Реакции связанные с изменением степени окисления атомов в молекулах реагирующих веществ называются окислительновосстановительными. Степень окисления условный электрический з
11438. ЭЛЕКТРОХИМИЧЕСКИЕ ПРОЦЕССЫ 108.5 KB
  ЛАБОРАТОРНАЯ РАБОТА №9 ЭЛЕКТРОХИМИЧЕСКИЕ ПРОЦЕССЫ Основные понятия Характерной особенностью окислительновосстановительных реакций является возможность пространственного разделения процессов окисления и восстановления т.е. проведения их на отдельных электр
11439. Знакомство с процессором командного языка ОС семейства Windows 106.5 KB
  Лабораторная работа № 1 : Знакомство с процессором командного языка ОС семейства Windows. Для того чтобы сдать лабораторную работу все примеры приводимые в теоретическом материале должны быть представлены преподавателю в виде созданных студентом bat файлов. Вопросы: ...
11440. Командная консоль ОС семейства Windows 102 KB
  Лабораторная работа № 1 Командная консоль ОС семейства Windows Задания. Традиционно все имена идентификаторы объектов лабораторной работы должны содержать суффикс FIO например именование файла My_File_LAS.odt если ФИО студента Луканов Алесандр Сергеевич. Оз...
11441. Форматирования текста 72 KB
  Лабораторная работа № 3 1.Форматирования текста Примеры форматирования текста приведены в файлах form_str.py и form_operat.py. 1Форматирование данных строкового типа производиться методами / функциями соответствующего модуля. Полное описание модуля можно вызвать командой ...
11442. Архитектура персонального компьютера. Классификация программного обеспечения 81.5 KB
  Лабораторная работа № 1 Тема: Архитектура персонального компьютера. Классификация программного обеспечения. Цель работы: изучить устройство персонального компьютера приобрести навыки в исследовании и описании аппаратного и программного обеспечения ЭВМ; изучить
11443. ИЗУЧЕНИЕ РАБОТЫ ТРЁХЭЛЕКТРОДНОЙ ЛАМПЫ 2.1 MB
  Лабораторная работа № 14 ИЗУЧЕНИЕ РАБОТЫ ТРЁХЭЛЕКТРОДНОЙ ЛАМПЫ ЦЕЛЬ РАБОТЫ: 1. Изучить практическое применение явления термоэлектронной эмиссии. 2. Овладеть методикой определения основных параметров трёхэлектродной лампы. ПРИБОРЫ: 1.Лампа 6Н7С или 6Н2П 1 шт. ...
11444. Правила измерения физических величин и определение погрешностей измерений 61 KB
  Лабораторная работа №2 Правила измерения физических величин и определение погрешностей измерений Цель работы: изучить правила определения погрешностей измерений физических величин. Расчетные формулы ...
11445. Проверка закона сохранения энергии 109.5 KB
  Лабораторная работа №3 Проверка закона сохранения энергии Цель работы: проверка с помощью маятника Обербека закона сохранения энергии при поступательном и вращательном движении. Приборы и инструменты: маятник Обербека секундомер масштабная линейка штангенц