94329

Хіміко-термічна обробка сталі. Цементація в твердому карбюризаторі

Доклад

Производство и промышленные технологии

Хімікотермічною обробкою ХТО називається процес дифузійного насичення поверхні сталевих деталей одним або декількома елементами вуглецем азотом алюмінієм хромом і ін. Відомі наступні види хімікотермічної обробки: цементація; азотування; ціанування; дифузійне насичення сталей хромом алюмінієм кремнієм і бором.

Украинкский

2015-09-11

26.49 KB

1 чел.

Хіміко-термічна обробка сталі. Цементація в твердому карбюризаторі

Хіміко-термічною обробкою (ХТО) називається процес дифузійного насичення поверхні сталевих деталей одним або декількома елементами (вуглецем, азотом, алюмінієм, хромом і ін.) шляхом нагріву деталей до заданої температури в твердому, газовому або рідкому середовищі з подальшою витримкою при цій температурі і охолодженням.

Цей процес на відміну від термічної обробки змінює не тільки структуру сталі, але і її хімічний склад в поверхневому шарі. В результаті ХТО забезпечується збільшення зносостійкості, корозійної стійкості, втомної міцності.

Процес хіміко-термічної обробки складається з наступних основних стадій: дисоціації, абсорбції, дифузії.

Дисоціація є процесом розпаду молекул на активні атоми дифундуючого елементу, наприклад:

Абсорбція є процесом поглинання поверхнею активних атомів. Цей процес відбувається за умови розчинення атомів зміцнюючих елементів в основному металі.

Дифузія проникнення атомів насичуючого елементу в глибину металу. Основною величиною, що визначає швидкість дифузії, є коефіцієнт Д під яким розуміють кількість речовини, дифундуючого елементу через одиницю площі в одиницю часу. Він залежить від температури і концентрації, збільшення яких підвищує дифузію.

Хіміко-термічна обробка є суміщеною зміцнюючою обробкою і в порівнянні з поверхневим гартуванням ХТО має наступні переваги: не залежить від конфігурації деталей, забезпечує більшу відмінність властивостей в поверхневому шарі і серцевині. Магніто-термохімічна обробка це така ж технологія, як ХТО тільки проводиться в зовнішньому магнітному полі.

Відомі наступні види хіміко-термічної обробки: цементація; азотування; ціанування; дифузійне насичення сталей хромом, алюмінієм, кремнієм і бором. 

Цементація процес насичення поверхні сталевих деталей вуглецем при нагріві їх в вуглецевому середовищі карбюризаторі.


Цементація і подальша термічна обробка (гартування та низький відпуск) призначені для отримання в поверхневому шарі високої твердості і зносостійкості з підвищенням межі контактної витривалості і межі витривалості при вигині та крученні. Цементація широко застосовується при виготовленні зубчастих коліс та інших деталей.

Цементації піддають низьковуглецеві сталі 15, 20, 15Х, 18ХГТ, 18ХНМА, 12ХНЗА, 18Х2Н4ВА з метою збереження у деталей в'язкої серцевини. Леговані сталі застосовуються для відповідальних і важко навантажених деталей. Вони забезпечують створення в'язкої і досить міцної серцевини, що виключає продавлювання поверхневого шару при значних контактних навантаженнях.


Існують два основні способи: цементація в твердому карбюризаторі і газова цементація.

Цементація в твердому карбюризатори . У металевий ящик укладаються деталі з подальшою засипкою-карбюризатором (рис. 4.10). Карбюризатор готують у вигляді гранульованих зерен розміром 3-10 мм. В якості твердого карбюризатора використовуються різні суміші (табл. 4.3), основним компонентом яких є деревне вугілля, а також вуглекислі солі барію і кальцію.

Ящик, закритий кришкою, яка герметизується вогнетривкою глиною, нагрівають і витримують в печах при температурі вище Ас3 (930-950°С).

Кисень повітря, що є в ящику, з'єднуючись з вуглецем, утворює окис вуглецю по реакції:



Окис вуглецю при контакті з сталевими деталями розкладається за реакцією.


Атомарний вуглець дифундує в поверхневі шари деталі. Вуглекислі солі, що входять до складу карбюризатора, є хорошими активаторами процесу і самі розкладаючись, забезпечують отримання додаткового атомарного вуглецю за реакціями:


Процес цементації в твердому карбюризаторі досить тривалий, оскільки середня швидкість цементації при температурах 930-950°С приблизно рівна 0,1 мм/год.

Цементація в твердому карбюризаторі, не дивлячись на низьку ефективність процесу, широко застосовується в серійному, дрібносерійному і одиничному виробництві, а також при ремонті.



Газова цементація вперше запропонована і практично застосована П.П.Аносовим в тридцятих роках IX століття. Вона знайшла широке застосування в серійному масовому виробництві і в порівнянні з цементацією в твердому карбюризаторі має наступні переваги: значно прискорюється процес насичення, збільшується продуктивність праці, створюється можливість автоматизації процессу та гартування безпосередньо з нагріву цементації.

Газова цементація здійснюється в стаціонарних або методичних конвеєрних печах. Газ для цементації готують окремо і подають в реторту цементації. Газами для цементації є окиси вуглецю і газоподібні вуглеводні. Атомарний вуглець утворюється за наступними реакціями:

з окису вуглецю:



з неграничних вуглеводів метилену СН2, етилену СгН»: С„Н2п -> пС + пН2. *

Найбільше застосування знаходять граничні вуглеводні: метан, етан, пропан, а з них метан у вигляді природного газу (77-97% СНД У той же час природний газ не можна вважати оптимальним цементуючим середовищем, оскільки при його використовуванні важко забезпечити певну концентрацію вуглецю в цементованому шарі. Тому в даний час широко упроваджують ендотермічну атмосферу (ендогаз), одержувану неповним спалюванням вуглеводневих газів. Застосування ендотермічної атмосфери дає можливість автоматично регулювати ступінь насичення вуглецем, а також механізувати і автоматизувати процеси цементації і подальшої термічної обробки деталі.

Остаточні властивості цементована деталь набуває після проведення термічної обробки. В результаті на поверхні виходить твердий шар високо вуглецевого мартенситу з карбідами, а в серцевині зберігається низька твердість і висока в'язкість, які забезпечуються феритом і перлітом для низьковуглецевої сталі і маловуглецевим мартенситом з феритом для легованих сталей.

Перше гартування (або нормалізація) подрібнює структуру серцевини і усуває цементитну сітку, друге гартування забезпечує появу в поверхневому шарі структури дрібноголчастого мартенситу із зернами надмірного цементиту, що і визначає високу твердість вуглецевого шару. Відпуск при 150— 200°С знімає внутрішні напруги. Цей спосіб термічної обробки є складним і застосовується для відповідальних деталей.

Найпоширенішою термічною обробкою після цементації є одинарне гартування з температури 780-850°С і низький відпуск при 150-200°С. При цьому відбувається повна перекристалізація в поверхневому шарі і часткова — в серцевині деталі.


 

А также другие работы, которые могут Вас заинтересовать

37005. Застосування статистичних методів у педагогічному дослідженні 29.13 KB
  Статистичні методи в педагогіці. Організація та методика науководослідницької діяльності: Підручник. ТЕОРЕТИЧНІ ВІДОМОСТІ Система методів і методика педагогічного дослідження У відповідності з логікою наукового пошуку здійснюється розробка методики дослідження що є сукупністю теоретичних та емпіричних методів які дають можливість з найбільшою достовірністю дослідити такий складний і багатофункціональний об'єкт яким є освітньовиховний процес. Методи педагогічного дослідження на відміну від методології це власне способи вивчення...
37006. Побудова вольт-фарадної характеристики варикапа. Напівпровідникові діоди 351.5 KB
  Дослідження напруги і струму діода при прямому і зворотньому зміщенні рн переходу. Побудова та дослідження вольтамперної характеристики ВАХ напівпроводнікового діода. Дослідження опору діода при прямому і зворотньому зсуві по вольтамперній характеристиці. Короткі теоретичні відомості Для дослідження напруги та струму діода при прямому і зворотному зсуві рн переходу досить мати універсальний прилад мультиметр.
37008. Робота із утилітою SiSoftware Sandra 1.59 MB
  SiSoftwre Sndr розроблена для роботи в ОС Windows 32. Запускаємо програму SiSoftwre Sndr. Ознайомлюймось з меню програми SiSoftwre Sndr.
37009. Файлова система NTFS 1.45 MB
  Ім’я робочої групи домену в який входить комп’ютер MSHOME Ім’я користувача dmin Характеристики комп’ютера: Процесор 1.6GHz Оперативна пам'ять 512Mб Об’єм жорсткого диска 80Gb Моделі мережевих пристроїв внутрішніх і зовнішніх Reltek RTL8139 810x Fmily Fst Ethernet NIC 10 100 mb s Наявність локальної мережі Ні Наявність глобальної мережі Так Операційна система Microsoft Windows XP Порядок виконання роботи: 1.txt рис1 Рис 1 1.
37010. Створення консольних додатків. Обробка розгалужених обчислювальних процесів на мові програмування C# 31.5 KB
  Індивідуальні завдання. Дано порядковий номер факультету вивести на екран його назву. Дан порядковый номер месяца вывести на экран количество месяцев оставшихся до конца года. Дан порядковый номер дня месяца вывести на экран количество дней оставшихся до конца месяца.
37011. Команди переходів 142 KB
  Теоретична частина Команди цієї групи дозволяють міняти послідовність виконання команд програми. Команди переходів і виклику підпрограм є однією із складових процесу прийняття рішень. Команди переходів і виклику підпрограм провіряють значення розрядів регістра ознак і визначають слідуючий крок виконання програми в залежності від результату провірки.
37012. Команди виклику підпрограм і повернення з підпрограм 194 KB
  Коли здійснюється звернення до підпрограми то на початку виконання вона реалізує запам’ятовування поточного значення лічильника команд точка повернення. Коли виконання підпрограми закінчується то за допомогою команди повернення мікропроцесору вказується що початкове значення лічильника команд потрібно взяти з пам’яті. Для запам’ятовування точки повернення використовується стек куди записується адреса команди слідуюча за адресою команди виклику підпрограми. Безумовний виклик підпрограми При виконанні даної команди виклик підпрограми...
37013. НЕПРЯМЕ ВИМІРЮВАННЯ ОПОРУ РЕЗИСТОРА З ВИКОРИСТАННЯМ АМПЕРМЕТРА І ВОЛЬТМЕТРА 54 KB
  Схема підключення амперметра і вольтметра при вимірюванні опору; а метод вольтметра б метод амперметра. Вимірювальний опір визначається із формули: Rx = U U Ix = U Ixr Ix 1 Таким чином чим більший опір амперметра тим більша похибка вимірювання. Точність вимірювання при цьому методі буде визначатись сумою похибок амперметра і вольтметра.