94382

Строение и функции клеточных мембран. Надмембранные и подмембранные комплексы клеток

Доклад

Биология и генетика

Надмембранные и подмембранные комплексы клеток. Различают два типа эндоцитоза: 1 фагоцитоз захват и поглощение крупных частиц клеток частей клеток макромолекул и 2 пиноцитоз захват и поглощение жидкого материала. Надмембранные и подмембранные комплексы клеток В животных клетках гликопротеины образуют надмембранный комплекс...

Русский

2015-09-13

27.85 KB

3 чел.

Строение и функции клеточных мембран. Надмембранные и подмембранные комплексы клеток.

Все биологические мембраны имеют общие структурные особенности и свойства. В настоящее время общепринята жидкостно-мозаичная модель строения мембраны. Основу мембраны составляет липидный бислой, образованный в основном фосфолипидами. Один участок молекулы фосфолипида называют гидрофильной головкой, участки, в которых находятся остатки жирных кислот — гидрофобными хвостами. В мембране фосфолипиды располагаются строго упорядоченно: гидрофобные хвосты молекул обращены друг к другу, а гидрофильные головки — наружу, к воде.

Помимо липидов в состав мембраны входят белки (в среднем ≈ 60%). Различают: 1) периферические белки (расположены на наружной или внутренней поверхности липидного бислоя), 2)полуинтегральные белки (погружены в липидный бислой на различную глубину), 3) интегральные, или трансмембранные, белки (пронизывают мембрану насквозь, контактируя при этом и с наружной, и с внутренней средой клетки).

Строение мембраны: А — гидрофильная головка фосфолипида; В — гидрофобные хвостики фосфолипида; 1, 2 —белки F; 3 — разветвленная олигосахаридная цепь

В состав мембраны могут входить углеводы (до 10%). Углеводный компонент мембран представлен олигосахаридными или полисахаридными цепями, связанными с молекулами белков (гликопротеины) или липидов (гликолипиды). В основном углеводы располагаются на наружной поверхности мембраны. Углеводы обеспечивают рецепторные функции мембраны.

Функции мембран

Мембраны выполняют такие функции:

  1.  отделение клеточного содержимого от внешней среды,
  2.  регуляция обмена веществ между клеткой и средой,
  3.  деление клетки на компартаменты («отсеки»),
  4.  место локализации «ферментативных конвейеров»,
  5.  обеспечение связи между клетками в тканях многоклеточных организмов (адгезия),
  6.  распознавание сигналов.

Важнейшее свойство мембран — избирательная проницаемость, т.е. мембраны хорошо проницаемы для одних веществ или молекул и плохо проницаемы (или совсем непроницаемы) для других. Это свойство лежит в основе регуляторной функции мембран, обеспечивающей обмен веществ между клеткой и внешней средой. Процесс прохождения веществ через клеточную мембрану называют транспортом веществ. Различают: 1) пассивный транспорт — процесс прохождения веществ, идущий без затрат энергии; 2) активный транспорт — процесс прохождения веществ, идущий с затратами энергии.

Эндоцитоз — процесс поглощения клеткой крупных частиц и макромолекул. Различают два типа эндоцитоза: 1) фагоцитоз — захват и поглощение крупных частиц (клеток, частей клеток, макромолекул) и 2) пиноцитоз — захват и поглощение жидкого материала.

Экзоцитоз — процесс, обратный эндоцитозу: выведение различных веществ из клетки.

Надмембранные и подмембранные комплексы клеток

В животных клетках гликопротеины образуют надмембранный комплекс — гликокаликс, имеющий толщину несколько десятков нанометров. В нем располагаются многие рецепторы клетки, с его помощью происходит адгезия клеток. Он обеспечивает непосредственную связь клеток с внешней средой; благодаря наличию в нем ферментов может происходить внеклеточное пищеварение, через гликокаликс клетка воспринимает раздражения. Кроме того, он обеспечивает связь между клетками. Поскольку его слой очень тонкий, он не выполняет опорной функции, присущей клеточным стенкам растений, грибов и прокариот.

Определенной жесткости оболочкам животных клеток может оказывать пеликула, присутствует в клетках многих простейших (инфузорий, эвглены т.д.). Пеликула - это комплекс, состоящий из плазматической мембраны и структур, расположенных под ней в измененном внешнем слое цитоплазмы (эктоплазма).

У клеток прокариот, грибов и растений плазматическая мембрана снаружи покрыта клеточной стенкой.

Клеточная стенка растений состоит преимущественно из нерастворимых в воде волоконец целлюлозы, собранных в пучки. Клеточные стенки могут деревенеть, т.е. промежутки между волоконцами целлюлозы заполняются особым органическим соединением - лигнином, что также способствует выполнению опорной функции. Клеточная стенка содержит поры, выстланы мембраной, через которые проходят межклеточные цитоплазматические мостики. Все соединения клеточной стенки синтезируются в самой клетке.

Через клеточные стенки растений происходит транспорт воды и определенных соединений.

В разных групп грибов структура и химический состав клеточной стенки имеют определенные отличия. Основу ее составляют разнообразные полисахариды (целлюлоза, хитин, гликоген и др.), характерные для той или иной группе.

К подмембранным комплексав клеток, кроме упомянутой выше Пеликулы, принадлежат белковые образования (микротрубочки и микрофиламенты), которые составляют опору клеток (цитоскелет). Элементы цитоскелета выполняют опорную функцию, способствуют закреплению органелл в определенном положении, а также их перемещению в клетке.

Микрофиламенты -это тонкие нити сократительных белков (актина, миозина и т.д.), пронизывающих цитоплазму. Они участвуют в изменении формы клетки, например, во время ее движения, а также при делении животных клеток.

Микротрубочки - полые цилиндрические структуры диаметром, состоящие преимущественно из белка тубулина (рис.20). Они участвуют в формировании веретена деления эукариотических клеток, во внутриклеточном транспорте веществ, входящих в состав ресничек, жгутиков, центриолей.


 

А также другие работы, которые могут Вас заинтересовать

36810. Установление нормальности и титра тиосульфата по бихромату (метод йодометрия) 57 KB
  Тема: Установление нормальности и титра тиосульфата по бихромату метод йодометрия. Определение нормальности и титра тиосульфата по бихромату калия методом йодометрии. Для определения окислителей используют раствор тиосульфата натрия N2S2O3. Выделившийся йод титруют раствором тиосульфата натрия точно известной нормальности.
36811. Определение количества хлорида натрия в растворе. Метод осаждения 50 KB
  Материальнотехническое обеспечение: Штатив Бунзена титровальный набор титровальные колбы банки для слива воронки бюретка пипетки Мора капельницы раствор хлорида натрия NCL стандартный раствор 005Н gNО3 5 раствор хромата калия K2CrO4 дистиллированная вода. Расчет нормальности и титра раствора NCl. Теоретические основы: В методе Мора в качестве стандартного раствора используется 005Н gNO3 титр и нормальную концентрацию которого устанавливают по раствору NCl индикатором является 5 ый раствор К2СrO4....
36812. Определение общей жесткости воды г. Симферополя методом комплексиметрии 52.5 KB
  Тема: Определение общей жесткости воды г. Умения: Учиться проводить исследования общей жесткости воды г. Различают временную устраняемую и постоянную жесткость воды. Сумма временной и постоянной жесткости воды определяет ее общую жесткость.
36813. Приготовление раствора точной заданной концентрации 69.5 KB
  Тема: Приготовление раствора точной заданной концентрации. Умения: Используя рациональные способы ведения технологических процессов учиться готовить растворы различной концентрации уметь рассчитывать массу вещества массу раствора нормальность и титр. Титр показывает сколько граммов вещества растворено в 1мл раствора. Как приготовить 250мл 01 Н раствора перекристаллизованной чистой двухосновной щавелевой кислоты Н2С2О4 2Н2О которую используют для...
36814. ИЗУЧЕНИЕ ПОГЛАЩЕНИЯ СВЕТА 916.5 KB
  КРАТКАЯ ТЕОРИЯ Прохождение света через вещество ведет к возникновению колебаний электронов вещества под воздействием электромагнитного поля волны и сопровождается потерей энергии этой волны затрачиваемой на возбуждение колебаний электронов. Поэтому интенсивность падающего света по мере проникновения волны в вещество уменьшается. Действительно интенсивность световой волны прошедшей среду толщиной d уменьшается по закону: I=I0ekd 1 где I0 –...
36815. Моделирование командных генераторов гармонических сигналов 55.5 KB
  Цель работы: определить схемы с помощью которых можно задать воздействие и рассчитать их параметры. схема моделирования Определим параметры модели: задание сигнала 2. схема моделирования Определим параметры модели: Таким образом данная схема не реализует синусоидальный сигнал невозможно скомпенсировать косинусоидальную составляющую. схема моделирования Определим параметры модели: задание сигнала 4.
36816. Информационно – образовательная среда вуза 73.5 KB
  Содержание работы: Задание №1 Сформируйте электронный глоссарий по тематике Информационно – образовательная среда: База данных Банк данных Дистанционное обучение Индивидуальный образовательный маршрут Индивидуальная образовательная траектория Информатизация образования Информационная деятельность Информационная подготовка Информационно – коммуникационная среда Информационно – коммуникационная предметная среда Информационно – методическое обеспечение учебно – воспитательного процесса Информационнообразовательная...
36817. Изучение возможностей работы в текстовом редакторе MS Word 64 KB
  проделайте следующие операции: Создайте тестовый документ с помощью меню Файл Создать. Установите параметры и размеры страницы открыв диалоговое окно Параметры страницы в меню Файл. Чтобы отменить ваши неправильные действия воспользуйтесь командой Отменить из меню Правка. Чтобы вернуть отмененное действие воспользуйтесь командой Повторить из меню Правка.
36818. ВЫБОР МЕТОДОВ И СРЕДСТВ ИЗМЕРЕНИЙ ЛИНЕЙНЫХ РАЗМЕРОВ 327 KB
  Лабораторная работа № 1 ВЫБОР МЕТОДОВ И СРЕДСТВ ИЗМЕРЕНИЙ ЛИНЕЙНЫХ РАЗМЕРОВ Цель работы: учебная получить навыки работы с нормативными документами для выбора методов и средств измерений линейных размеров; практическая выбрать для измерения линейных размеров детали выданной руководителем в соответствии с номером подгруппы соответствующие универсальные измерительные средства и указать их метрологические характеристики.80 всех видов измерений составляют линейные измерения. Любой линейный размер может быть измерен различными...