94408

Пластический обмен. Биосинтез белков. Особенности реакций матричного синтеза

Доклад

Биология и генетика

Биосинтез белков. Особенности реакций матричного синтеза. Пластический обмен совокупность реакций синтеза органических веществ в клетке с использованием энергии. Синтез белков из аминокислот жиров из глицерина и жирных кислот примеры биосинтеза в клетке.

Русский

2015-09-13

32.69 KB

2 чел.

Пластический обмен. Биосинтез белков. Особенности реакций матричного синтеза.

Пластический обмен — совокупность реакций синтеза органических веществ в клетке с использованием энергии. Синтез белков из аминокислот, жиров из глицерина и жирных кислот — примеры биосинтеза в клетке. Значение пластического обмена: обеспечение клетки строительным материалом для создания клеточных структур; органическими веществами, которые используются в энергетическом обмене.

Биосинтез белков

Биосинтез белков является важнейшим процессом анаболизма. Все признаки, свойства и функции клеток и организмов определяются в конечном итоге белками. Белки недолговечны, время их существования ограничено. В начале 50-х гг. ХХ в. Ф. Крик сформулировал центральную догму молекулярной биологии: ДНК → РНК → белок. Участок ДНК, несущий информацию о первичной структуре конкретного белка, называется геном. В процессе биосинтеза белка выделяют два основных этапа: транскрипция — синтез РНК на матрице ДНК (гена) — и трансляция — синтез полипептидной цепи.

Генетический код — система записи информации о последовательности аминокислот в полипептиде последовательностью нуклеотидов ДНК или РНК. В настоящее время эта система записи считается расшифрованной.

Свойства генетического кода:

  1.  триплетность: каждая аминокислота кодируется сочетанием из трех нуклеотидов (триплетом, кодоном);
  2.  однозначность (специфичность): триплет соответствует только одной аминокислоте;
  3.  вырожденность (избыточность): аминокислоты могут кодироваться несколькими (до шести) кодонами;
  4.  универсальность: система кодирования аминокислот одинакова у всех организмов Земли;
  5.  неперекрываемость: последовательность нуклеотидов имеет рамку считывания по 3 нуклеотида, один и тот же нуклеотид не может быть в составе двух триплетов;
  6.  из 64 кодовых триплетов 61 — кодирующие, кодируют аминокислоты, а 3 — бессмысленные (в РНК — УАА, УГА, УАГ), не кодируют аминокислоты. Они называются кодонами-терминаторами, поскольку блокируют синтез полипептида во время трансляции. Кроме того, есть кодон-инициатор (в РНК — АУГ), с которого трансляция начинается.

Таблица генетического кода

Первое основание

Второе основание

Третье основание

У(А)

Ц(Г)

А(Т)

Г(Ц)

У(А)

Фен Фен Лей Лей

Сер Сер Сер Сер

Тир Тир — —

Цис Цис — Три

У(А) Ц(Г) А(Т) Г(Ц)

Ц(Г)

Лей Лей Лей Лей

Про Про Про Про

Гис Гис Глн Глн

Арг Арг Арг Арг

У(А) Ц(Г) А(Т) Г(Ц)

А(Т)

Иле Иле Иле Мет

Тре Тре Тре Тре

Асн Асн Лиз Лиз

Сер Сер Арг Арг

У(А) Ц(Г) А(Т) Г(Ц)

Г(Ц)

Вал Вал Вал Вал

Ала Ала Ала Ала

Асп Асп Глу Глу

Гли Гли Гли Гли

У(А) Ц(Г) А(Т) Г(Ц)

* Первый нуклеотид в триплете — один из четырех левого вертикального ряда, второй — один из верхнего горизонтального ряда, третий — из правого вертикального.

Реакции матричного синтеза

Это особая категория химических реакций, происходящих в клетках живых организмов. Во время этих реакций происходит синтез полимерных молекул по плану, заложенному в структуре других полимерных молекул-матриц. На одной матрице может быть синтезировано неограниченное количество молекул-копий. К этой категории реакций относятся репликация, транскрипция, трансляция и обратная транскрипция.

Название реакции матричного синтеза

Характеристика процесса

Основные компоненты

Репликация

Синтез ДНК на матрице ДНК

Дезоксирибонуклеозидтрифосфаты, ферменты

Транскрипция

Синтез РНК на матрице ДНК

Участок ДНК, рибонуклеозидтрифосфаты, ферменты

Трансляция

Синтез полипептида на матрице РНК

Рибосомы, иРНК, аминокислоты, тРНК, АТФ, ГТФ, ферменты

Обратная транскрипция

Синтез ДНК на матрице РНК

Дезоксирибонуклеозидтрифосфаты, ферменты

Транскрипция

Транскрипция — синтез РНК на матрице ДНК. Осуществляется ферментом РНК-полимеразой.

Синтез РНК происходит на одной из двух цепочек ДНК в соответствии с принципами комплементарности и антипараллельности. Строительным материалом и источником энергии для транскрипции являются рибонуклеозидтрифосфаты (АТФ, УТФ, ГТФ, ЦТФ).

Транскрипция происходят в клеточном ядре. Зрелая иРНК приобретает определенную пространственную конформацию, окружается белками и в таком виде через ядерные поры транспортируется к рибосомам; иРНК эукариот, как правило, моноцистронны (кодируют только одну полипептидную цепь).

Трансляция

Трансляция — синтез полипептидной цепи на матрице иРНК.

Органоиды, обеспечивающие трансляцию, — рибосомы. Синтез белковых молекул может происходить в цитоплазме, на шероховатой эндоплазматической сети, в митохондриях и пластидах. В цитоплазме синтезируются белки для собственных нужд клетки; белки, синтезируемые на ЭПС, транспортируются по ее каналам в комплекс Гольджи и выводятся из клетки. В рибосоме выделяют малую и большую субъединицы.

Для транспорта аминокислот к рибосомам используются транспортные РНК, тРНК. Они имеют третичную структуру, по форме напоминающую лист клевера. В тРНК различают антикодоновую петлю и акцепторный участок. В антикодоновой петле РНК имеется антикодон, комплементарный кодовому триплету определенной аминокислоты, а акцепторный участок на 3'-конце способен с помощью фермента аминоацил-тРНК-синтетазы присоединять именно эту аминокислоту (с затратой АТФ). Таким образом, у каждой аминокислоты есть свои тРНК и свои ферменты, присоединяющие аминокислоту к тРНК.

1 — антикодон; 2 — участок, связывающий аминокислоту.

Транспорт аминокислот к рибосомам: 1 — фермент; 2 — тРНК; 3 — аминокислота.

Двадцать видов аминокислот кодируются 61 кодоном, теоретически может быть 61 вид тРНК с соответствующими антикодонами. Но кодируемых аминокислот всего 20 видов, значит, у одной аминокислоты может быть несколько тРНК..

Синтез белка начинается с того момента, когда к иРНК присоединяется малая субъединица рибосомы, затем происходит присоединение большой субъединицы рибосомы, и поступает тРНК, чей антикодон комплементарно спаривается с кодоном иРНК.

Как только образовалась пептидная связь между аминокислотами, рибосома передвигается на следующий кодовый триплет иРНК. Трансляция идет до тех пор, пока не попадается кодон-терминатор (УАА, УАГ или УГА), с которым связывается особый белковый фактор освобождения. Полипептидная цепь отделяется от тРНК и покидает рибосому. Происходит диссоциация, разъединение субъединиц рибосомы.

Скорость передвижения рибосомы по иРНК — 5–6 триплетов в секунду, на синтез белковой молекулы, состоящей из сотен аминокислотных остатков, клетке требуется несколько минут.

В трансляции можно выделить три стадии: а) инициации (образование иницаторного комплекса), б) элонгации (непосредственно «конвейер», соединение аминокислот друг с другом), в) терминации (образование терминирующего комплекса).


 

А также другие работы, которые могут Вас заинтересовать

29189. Обнаружение, фиксация и изъятие следов ног 48 KB
  Обнаружение следов обуви Следы обуви чаще видимые = применяются в основном визуальные методы их обнаружения. Фиксация следов обуви: 1 описание в протоколе осмотра места происшествия Протокол осмотра места происшествия должен содержать следующую информацию: Всегда обращается внимание на качество следов. 1 Описывается вся обстановка: количество следов месторасположение следов взаиморасположение следов относительно друг друга.
29190. Криминалистическое значение следов ног 41.5 KB
  Следы ног встречаются реже. Это связано со следующими обстоятельствами: 1 механизм образования: взаимное воздействие двух гладких твёрдых поверхностей 2 при расследовании сложно установить относимость следов к происшествию на месте происшествия обычно бывает много людей = очень много следов. Криминалистическое значение следов ног: 1 по следам ног можно установить отдельные элементы механизма совершения преступления: пути подхода и отхода преступника направление движения преступника количество лиц находившихся на месте происшествия...
29191. Способы обнаружения следов рук 39.5 KB
  Предполагает использование не только зрительного аппарата человека но и специальных приборов осветительных увеличительных. 2 физические порошковый метод способ – это использование дактилоскопических порошков использование паров йода 3 химические способы В основном используются следующие реактивы: 5процентный водный раствор азотнокислого серебра 15процентный раствор нингидрина в ацетоне.
29192. Способы изготовления гипсовых слепков 42 KB
  Используется когда следы оставлены на влажной земле снеге и т. 2 насыпной 3 комбинированный Наливной способ изготовления гипсовых слепков Правила: 1 необходимо удалить из следа все посторонние включения частицы 2 если след неглубокий – нужно сделать вокруг следа валик из грунта или дощечек 3 необходимо изготовить каркас из веток или проволоки чтобы удержать форму следа. 5 гипсовый раствор заливают в след так чтобы было залито дно следа.
29193. «Дорожка» следов ног: её криминалистическое значение и элементы 46.5 KB
  Дорожку следов следует отличать от совокупности разрозненных следов. признаки дорожки следов: 1 это совокупность следов одного человека 2 следы должны быть оставлены в результате какоголибо поступательного движения ходьбы или бега 3 следы должны быть образованы и правой и левой ногами 4 количественная характеристика – следов должно быть не менее 3х. Рекомендуется все исследования проводить на 3х самых чётких следах если следов больше то выбираются самые чёткие.
29194. Криминалистическое значение следов орудий взлома и инструментов 49.5 KB
  Классификация следов орудий взлома 1 по механизму образования: поверхностные следы это например различные повреждения на внутренней части замков – царапины соскобы краски объёмные следы несут больше криминалистически значимой информации 2 по механизму образования: следы удара или отжима Остаются когда воздействие орудия взлома на поверхность происходит под прямым углом. Обычно это объёмные следы. следы скольжения Образуются при скользящем движении орудия взлома под углом или параллельно следовоспринимающей поверхности следы...
29195. Следы зубов человека 52.5 KB
  Для правильной оценки следов зубов необходимо рассмотреть строение зубного аппарата. Каждый из зубов имеет различную форму коронки. Они различны – относятся к количеству размерам форме зубов и т.
29196. Криминалистическое значение следов транспортного средства 57.5 KB
  Количество осей можно установить: в процессе стояния транспортного средства по следам стояния при повороте автомобиля т. Ширина колеи – это важный признак габаритов транспортного средства. 4 база автомобиля – это расстояние между осями транспортного средства.
29197. Классификация следов транспортных средств 55.5 KB
  Следы может оставлять любая часть транспортного средства: как ходовая часть колёса так и выступающие части автомобиля. Следы транспортных средств в широком смысле этого слова – это 1 отделившиеся части транспортного средства деталь целиком либо её осколки обломки 2 пролившиеся жидкости тормозная жидкость масло топливо 3 части перевозимых грузов. Некоторые криминалисты к следам транспортных средств относят также следы водителя оставленные вблизи транспортного средства.