95758

Позиционные задачи

Лекция

Математика и математический анализ

Позиционные задачи Построение точки пересечения прямой с плоскостью. Построение прямой пересечения двух плоскостей. Общий случай пересечения поверхностей. Построение точки пересечения прямой с плоскостью Решается с помощью вспомогательной секущей плоскости.

Русский

2015-09-29

353 KB

0 чел.

3. Позиционные задачи

  1.  Построение точки пересечения прямой с плоскостью.
  2.  Построение прямой пересечения двух плоскостей.
  3.  Пересечение поверхности плоскостью.
  4.  Пересечение линии с поверхностью.
  5.  Взаимное пересечение поверхностей. Общий случай пересечения поверхностей.
  6.  Метод вспомогательных секущих плоскостей.

  1.  Построение точки пересечения прямой с плоскостью

Решается с помощью вспомогательной секущей плоскости.

Алгоритм решения:

1) Заданная прямая заключается во вспомогательную плоскость. В качестве вспомогательной чаще всего используются проецирующие плоскости.

2) Строится прямая пересечения вспомогательной плоскости с заданной плоскостью.

3) Построенная прямая и заданная прямая будут лежать во вспомогательной плоскости, будут пересекаться. Точка их пересечения будет являться искомой точкой пересечения заданной прямой и заданной плоскости.

4) После нахождения точки пересечения нужно определить видимость прямой относительно плоскости.

Пример.

Построить точку пересечения прямой l и плоскости (АВС).

  1.  Построение прямой пересечения двух плоскостей

Две плоскости пересекаются по прямой.

Т.к. прямая определяется двумя точками, достаточно найти  2 точки прямой пересечения. Для этого надо провести 2 вспомогательные секущие плоскости.

1) Проводится вспомогательная плоскость (проецирующая или уровня).

2) Строятся прямые пересечения вспомогательной плоскости с каждой из заданных плоскостей.

3) Находится точка пересечения построенных прямых,

4) Для нахождения второй точки прямой пересечения нужно провести вторую вспомогательную плоскость и выполнить аналогичные построения.

Пример.

Построить прямую пересечения плоскости () и ()

1) H(H2)

2)

   

3)

4)

5)

  

6)

  1.  Пересечение поверхности плоскостью

При пересечении плоскости с поверхностью искомая линия пересечения будет представлять собой плоскую кривую. Сложность решения задачи зависит от того, какая задана плоскость – частного положения или общего.

Построение линии пересечения поверхности с плоскостью частного

положения

В этом случае решение задачи значительно упрощается, т.к. нам сразу становится известна одна проекция линии пересечения. Она будет совпадать с вырожденной проекцией плоскости и лежать внутри очерка поверхности, поэтому остаётся построить лишь вторую проекцию искомой линии пересечения. Для этого нужно воспользоваться вспомогательными линиями, лежащими на поверхности (параллелями или образующими).

Пример.

Построить линию пересечения сферы с фронтально проецирующей плоскостью .

  1.  Построение точки пересечения линии с поверхностью

Данная задача решается с помощью вспомогательной секущей поверхности.

Алгоритм решения:

  1.  заданную линию заключаем во вспомогательную поверхность .
    1.  строим линию пересечения вспомогательной поверхности с заданной поверхностью F.
    2.  построенная линия n и заданная линия  лежат на поверхности , а, значит, будут пересекаться. Точка их пересечения будет являться искомой точкой пересечения линии  с поверхностью F.

В качестве вспомогательной поверхности обычно используют:

  1.  плоскость (если заданная линия является прямой или плоской кривой);
  2.  проецирующая цилиндрическая поверхность (если заданная линия является пространственной кривой).

Пример.

Построить точку пересечения линии  с конической поверхностью общего вида

  1.  Взаимное пересечение поверхностей. Общий случай пересечения поверхностей

Линия пересечения двух поверхностей в общем случае является пространственной кривой, порядок которой = произведению порядков пересекающихся поверхностей.

Графически порядок кривой и поверхности определяется числом возможных точек пересечения с произвольной прямой.

Чтобы построить эту линию, необходимо воспользоваться вспомогательными секущими поверхностями.

Решение:

1)

2)

3)

  1.  Обе заданные поверхности пересекаются вспомогательной поверхностью . В  качестве вспомогательной чаще всего используются плоскости, сферы или проецирующие цилиндрические поверхности.
  2.  Строятся линии пересечения вспомогательной поверхности с каждой из заданных поверхностей.
  3.  Построенные линии m и n лежат на одной и той же поверхности , а значит, пересекаются в точках M и N. Эти точки будут общими для трёх поверхностей: , а значит, будут принадлежать искомой линии пересечения заданных поверхностей.

Для построения других точек линии пересечения необходимо провести ещё несколько секущих поверхностей и выполнить аналогичные построения.

Найденные точки соединяются плавной линией по лекалу с учётом видимости. При этом нужно определить также и видимость очерковых линий поверхностей.

Выбор и расположение секущих вспомогательных поверхностей определяется следующими обстоятельствами:

  1.  желательно, чтобы линии пересечения вспомогательной поверхности с заданными были графически простыми линиями;
  2.  и чтобы они (эти линии) проецировались на какую-либо плоскость проекций без искажения.

  1.  Метод вспомогательных секущих плоскостей

Чаще всего в качестве вспомогательных используются проецирующие плоскости и плоскости уровня. Однако, в случае пересечения двух линейчатых поверхностей иногда используют плоскости общего положения.

Сложность решения задачи в многом определяется сложностью построения линий пересечения вспомогательной поверхности с заданной. Чем проще будут эти линии (прямые или окружности), тем проще будет решение задач.

Среди точек линии пересечения есть такие, которые выделяются своим особым положением среди остальных точек (самая верхняя и самая нижняя, крайняя правая и левая, точки – границы видимости и т.д.). Такие точки называются особыми или опорными, и строить их нужно в первую очередь.

Обычно эти точки находятся сразу без применения дополнительных построений. Остальные точки линии пересечения называются промежуточными, и все они строятся с помощью одного и того же приёма.

Пример.

Построить линию пересечения сферы с прямым круговым конусом.

1)

2)

3)

4)

5)

6)

PAGE  6


 

А также другие работы, которые могут Вас заинтересовать

52461. ВІТАННЯ ВІД СВІТЛОФОРЧИКА 53.5 KB
  Учителька бабуся. Учителька бабуся. Ура Учителька бабуся. О а навіщо нам ці правила Що ми – шофери чи що Учителька бабуся.
52462. Дальтон-технологія 109 KB
  Серед інноваційних технологій яка саме дозволяє здійснити такий підхід до навчання відома дальтонтехнологія. Дальтонтехнологія один із методів активізації пізнавальної та креативної діяльності учнів при вивченні предмету. У дальтонтехнології закладені великі можливості для реалізації особистісноорієнтованого навчання в повнішій мірі навіть в умовах класноурочної системи.
52463. Галицько- Волинська держава. Данило Галицький 110.78 KB
  Мета: ознайомити учнів з виникненням Галицько Волинської держави; на прикладах особистостей Романа Великого та Данила Галицького продовжити формування вмінь складати характеристику видатних історичних діячів; виховувати почуття гордості за славне минуле свого народу повагу до історичних діячів. Обладнання: підручник карта Галицько Волинська держава портрети Романа і Данила зошит Власова роздатковий матеріал схеми таблиці вислови речення. ' Основні поняття і терміни: Галицько Волинська...
52464. American Holidays. Thanksgiving Day 338 KB
  The pilgrims celebrted the first Thnksgiving Dy in the fll of 1621. The pilgrims siled to meric from Plymouth Englnd in September 1620. Wht joy the pilgrims hd when they relized where they were There were people living in meric before the pilgrims rrived. The pilgrims first winter in the New World ws difficult.
52467. Декартові координати на площині 198.5 KB
  Узагальнити та систематизувати знання учнів з теми; розвивати пам’ять, логічне мислення,здібності учнів; виховувати інтерес до математики, увагу, самостійність;формувати вміння працювати.
52468. Толерантность 351.5 KB
  Дело № 1 Методическое пособие для Ученика конкурс учебных судов Пилотное издание серии Живое право в рамках проектов Развитие толерантности посредством учебных судов Гражданское образование: развитие профессионального потенциала Мозаика граждановедения Дело № 1 О фотографиях в паспорте РФ СанктПетербургский институт права имени Принца П. Конкурс был организован СанктПетербургским институтом права имени Принца П. Институтом права организуется региональный тур конкурса для СанктПетербурга и Ленинградской...
52469. СУДЕБНОЕ ЗАСЕДАНИЕ ПО УГОЛОВНОМУ ДЕЛУ 103 KB
  Целями проведения деловой игры Судебное заседание по уголовному делу являются: практическое изучение процесса судебного разбирательства его стадий; обучение правовой оценке исходной фактической правовой ситуации анализу материалов дела законодательства разработке правовой позиции по делу принятию процессуальных решений; формирование практических навыков реализации полномочий профессиональными субъектами уголовного судопроизводства в ходе судебного разбирательства составления процессуальных документов устных...