95924

Расчет МАЗС М-5 Урал

Дипломная

Производство и промышленные технологии

Сегодня рынок автозаправочных станций в России продолжает развиваться. Если в Москве и ближайшем Подмосковье сеть заправочных станций в основном сформировалась (в Москве и области сегодня порядка 1600 автозаправочных станций)

Русский

2015-10-01

4.44 MB

7 чел.

Содержание

[1] Содержание

[1.0.1] 1.7.1 Технологические решения участка выдачи ЖМТ

[1.0.2] 1.7.4  Система предотвращения переполнения резервуаров

[1.0.3] 1.7.6  Технологические островки ЖМТ

[1.0.4] 1.7.7   Сливная ванна

[1.0.5] 1.7.8 Деаэрация резервуаров, возврат паров

[1.1] Участок выдачи сжиженного углеводородного газа на МАЗС М-5 Урал          1265км

[1.2]         2.1 Расчет продолжительности слива топлива из автоцистерны самотеком

[1.2.1] 2.1.1Расчет продолжительности слива бензина из автоцистерны самотеком

[1.2.2] 2.1.2Расчет продолжительности слива Дт евро из автоцистерны самотеком

[1.3] 2.2  Гидравлический расчет всасывающей линии трубопровода

[1.4] 2.3 Расчет на прочность полиэтиленовых труб

[1.5] 2.4  Расчет оболочки резервуара

[2]  где R-радиус резервуара;

[3]      φ- коэффициент, зависящий от условия закрепления днища резервуара по контуру (φ=0,5-0,75).

[3.1] 3.1 Методика оценки экономической эффективности инвестиционных проектов

[3.1.1] 3.1.1 Показатели эффективности инвестиционных проектов

[3.2] Таблица 4

[3.3] Сводный сметный расчет стоимости строительства

[3.4] ООО «АЗС-Строй»

[3.5]  4.2 Промышленная безопасность

[3.5.1]  4.2.1Санитарно-защитные мероприятия

[3.5.2] 4.2.2 Опасные свойства бензина

[3.6] 4.2.3 Оказание первой помощи при отравлении парами бензина

[3.6.1] 4.2.4 Меры безопасности при работе с дизельным топливом

[3.6.2] 4.2.5 Охрана труда и техника безопасности

[3.6.3] 4.2.6 Требования охраны труда в аварийных ситуациях

[3.6.4] 4.2.7 Организация и условия труда работников АЗС

[3.7] 4.3 Мероприятия по предотвращению пожаров

[3.7.1] 4.3.1 Общие требования пожарной безопасности

[3.7.2] 4.3.2  Здание операторной и мойки автомобилей

[3.7.3] 4.3.3 Технологическая площадка АЗС

[3.8] 4.4  Охрана окружающей среды

[3.8.1] 4.4.2  Складирование (утилизация) отходов

[4] СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ


ВВЕДЕНИЕ

В настоящее время рынок Автомобильных Заправочных Станций (АЗС) - это одна из перспективных и постоянно развивающихся отраслей предпринимательства России и всего мира.

Сегодня рынок автозаправочных станций в России продолжает развиваться. Если в Москве и ближайшем Подмосковье сеть заправочных станций в основном сформировалась (в Москве и области сегодня порядка 1600 автозаправочных станций) и можно ожидать их технического совершенствования и расширения функциональности, то в других регионах России, в том числе и Татарстан, процесс формирования разветвленной сети станций еще в процессе становления. Конкуренция в бензиновом бизнесе весьма острая, но строительство АЗС с каждым годом продолжает расти и этому способствует ряд предпосылок.  Огромная территория Российской Федерации, требует развития и укрепления транспортной сети дорог для наращивания транспортных потоков.

Кроме того следует отметить, что большое количество АЗС основано на автобензине и дизельном топливе, но в последнее время в России увеличивается доля автомобилей работающих на газе. Применение сжиженного углеводородного газа (пропан-бутан) в качестве моторного топлива позволяет улучшить экологические характеристики автомобильного транспорта, что особенно важно для крупных городов. Кроме того, стоимость СУГ в два раза ниже стоимости бензина АИ-95, что обуславливает рост популярности автомобилей потребляющий данный вид топлива. В связи с этим, некоторые участники рынка делают ставку на установку газозаправочного оборудования и предоставления услуг по установке на автомобили газобаллонного оборудования. В таком случае речь идет уже о Многотопливном Автозаправочном Комплексе.

  1.  ТЕХНОЛОГИЧЕКАЯ ЧАСТЬ

         1.1 Краткая характеристика участка

Климатические условия площадки строительства характеризуются следующими данными

-  участок располагается во втором климатическом районе, первом подрайоне;

-  скоростной напор ветра – 0,3 кПа;

-  расчетный вес снегового покрова – 3,2 кПа;

-  расчетная зимняя температура зимнего воздуха – минус 33°С.

Площадка строительства расположена на юго-востоке Татарстана (территория центра Восточного Закамья). Район связан с населенными пунктами железнодорожным и автомобильным транспортом.

В орографическом отношении район исследований представляет собой самое возвышенное место Бугульминско – Белебеевское плато.

В рельефе территории четко выделяется ярусность или супенчатость как в долинах рек, так и на водоразделах.

Климат района умеренно-континентальный, иногда жарким летом и умеренно холодной зимой. Зимние температуры здесь могут достигать -48°С при средней температуре января -14,2°С, а летнее до 40°С тепла, при средней температуре июля +18,7°С. Среднегодовое количество осадков – 460 мм. Высота снежного покрова зимой достигает 0,5 – 0,6м.

Основанием для фундамента служит щебень известняка. Гидрогеологический участок изысканий характеризуется отсутствием подземных вод на глубине 6м. По данным анализа грунты не обладают агрессивными свойствами по отношению к бетонным и железобетонным конструкциям.

1.2 Исходные данные проекта

Разделом технологической части проекта предусмотрено: построение генерального плана участка, принципиальной схемы работы АЗС, технологической обвязки оборудования для жидкого моторного топлива и сжиженного углеводородного газа, трубопроводы наружной обвязки и план прокладки трубопроводов, подбор емкостей для хранения и выдачи ЖМТ и СУГ, насосов, вида топливораздаточных колонок.

В качестве исходного материала использованы:

пропускная способность участка выдачи ЖМТ;

пропускная способность участка выдачи СУГ;

годовой объем реализации топлива на АЗС;

объем хранимого топлива на АЗС;

число топливо-раздаточных колонок.

  1.  Классификация и назначение АЗС

Автозаправочная станция – комплекс зданий,  сооружений и оборудования, ограниченный участком площадки и предназначенный для заправки транспортных средств моторным топливом.

По количеству оказываемых услуг АЗС подразделяются на собственно заправочные станции, осуществляющие только заправку автотранспорта топливом и маслами, и автозаправочные комплексы, на которых помимо заправки автотранспорта топливом и маслами осуществляется его техническое обслуживание, мойка, расположены магазин, кафе, ресторан.

Принята следующая классификация АЗС:

а) традиционная автозаправочная станция – АЗС с подземным расположением резервуаров для хранения топлива, технологическая схема которой характеризуется разнесением резервуаров и топливораздаточных колонок (ТРК);

б) блочная автозаправочная станция - АЗС с подземным расположением

резервуаров для хранения топлива, технологическая схема которой характеризуется размещением ТРК над блоком хранения топлива, выполненным как единое заводское изделие;

в)  модульная заправочная станция – АЗС с надземным расположением резервуаров для хранения топлива, технологическая схема которой характеризуется разнесением ТРК и контейнера хранения топлива, выполненного как единое заводское изделие;

г)  передвижная автозаправочная станция – АЗС, предназначенная для розничной продажи топлива, мобильная технологическая система которой установлена на автомобильном шасси, прицепе или полуприцепе и выполнена как единое заводское изделие;

д) контейнерная автозаправочная станция – АЗС с надземным расположением резервуаров для хранения топлива, технологическая система которой характеризуется размещением ТРК в контейнере хранения топлива, выполненном как единое заводское изделие.

е) автомобильная газозаправочная станция – АЗС, на территории которой предусмотрена заправка баллонов топливной системы: грузовых, специальных и легковых автомобилей сжатым природным газом, используемым в качестве их моторного топлива.

ж) многотопливная автозаправочная станция – АЗС на территории которой предусмотрена заправка транспортных средств несколькими видами топлива, среди которых допускается жидкое моторное топливо (бензин, керосин), сжиженный газ (сжиженный пропан-бутан) и сжатый природный газ.

1.4 Планировочные решения размещения сооружений и оборудования АЗС    

 Автозаправочная станция располагается преимущественно с подветренной стороны ветров преобладающего направления (по годовой «розе ветров»)  вне населенного пункта[10].

Планировка автозаправочной станции осуществляется с учетом размещения на ее территории зданий и сооружений из условия рационального размещения инженерных коммуникаций, с условием полного исключения возможности  растекания аварийных проливов топлива как на территории АЗС, так и за ее пределы. На въезде и выезде с территории выполнены пологие участки высотой 0,3м и дренажные лотки, отводящие атмосферные осадки, загрязненные нефтепродуктами, в очистные сооружения.

При проектировании многотопливной АЗС учитываются минимальные расстояния до объектов к ней не относящихся в соответствии с таблицей 1.

Таблица 1 – Минимальные расстояния от АЗС до объектов к ней не относящихся

Наименование объектов, до которых определяется                   расстояние

Расстояние,м

(с учетом СУГ)

Производственные,                    складские

и административно-бытовые  здания  и   сооружения

промышленных   предприятий    

40

Лесные массивы хвойных и смешанных пород

50

Лесные массивы лиственных пород

25

Жилые и общественные здания

60

Места массового пребывания людей

60

Автомобильные дороги общей сети I, II и III категории                           

25

Автомобильные дороги общей сети IV и V категории                                

20

Железные дороги общей сети

40

Очистные канализационные сооружения  и  насосные станции, не относящиеся к АЗС                   

60

Склады  лесных  материалов,  торфа,  волокнистых горючих веществ, сена, соломы, а  также  участки открытого залегания торфа                       

50

Так же при проектировании особое внимание уделяется расстоянию между зданиями и сооружениями АЗС: от стенок резервуаров   для хранения топлива и аварийных резервуаров, наземного и надземного оборудования, в котором обращается топливо и его пары, корпуса ТРК и раздаточных колонок СУГ, границ площадок для автоцистерны и технологических колодцев, от стенок технологического оборудования очистных сооружений, от границ площадок для стоянки транспортных средств и от наружных стен и конструкций зданий АЗС.

Схема генерального плана АЗС предусматривает одностороннее движение автомобилей, при этом въезд и выезд разносторонние. Так же учитываются:

-  возможность заправки топливом автотранспортных средств с левосторонним, правосторонним и двухсторонним расположением топливных баков;

-   независимый подъезд автотранспортных средств к колонкам;

-  минимальная протяженность коммуникаций топлива;

-  оптимальные радиусы поворота для автотранспорта.

Принципиальная технологическая схема АЗС представлена на рисунке 1.

Топливо на АЗС завозится бензовозами и сливается через герметичные быстроразъемные муфты и фильтры. Сливные устройства установлены на специальной площадке. Сливные трубопроводы прокладываются подземно с

уклоном в сторону резервуаров. Для обеспечения слива бензина без его перелива на территории АЗС предусмотрен аварийный резервуар, объем

которого должен быть не менее, чем на 10% превышать объем используемых для завоза топлива автоцистерн. Аварийный резервуар оснащается тем же оборудованием, что и резервуары для топлив.

  Рисунок 1 - Принципиальная технологическая схема АЗС

1 - резервуар для приема и хранения топлива; 2 - резервуар для сбора аварийных проливов; 3 - ТРК; 4 - сливная ванна; 5 – дыхательный клапан; 6 – огневой предохранитель; 7 – линия наполнении резервуаров; 8 – линия выдачи; 9 – линия рециркуляции.

  1.   Технологическое оборудование АЗС

К основному технологическому оборудованию относятся резервуары и резервуарное оборудование, ТРК с аппаратурой управления и контроля, технологические трубопроводы (рисунок 2).

Рисунок 2- Схема установки технологического оборудования АЗС. 

1-топливораздаточная колонка (ТРК),2 - фланец, 3 - трубопровод подачи топлива, 4 - задвижка для нефтепродуктов, 5 - огневой предохранитель, 6 -клапан приемный, 7- замерный трубопровод, 8 - люк замерный, 9 - клапан дыхательный совмещенный, 10 – уровнемер, 11 - трубопровод налива, 12 - огневой предохранитель, 13 - электромагнитный клапан отсечки, 14 - фильтр грубой очистки, 15 - муфта сливная, 16 - сливной колодец, 17 - технологическая шахта, 18 - вентиляционная решетка, 19 - железобетонный колодец, 20 – ложемент, 21 - резервуар одностенный.

  1.   Производственные операции на АЗС

К основным производственным операциям, выполняемым на АЗС, относят: прием, хранение, отпуск, замер и учет нефтепродуктов, оформление товарно-транспортной документации

1.6.1 Прием нефтепродуктов

Доставка нефтепродуктов на АЗС осуществляется автомобильным или, в редких случаях, железнодорожным и трубопроводным транспортом.

Перед началом слива нефтепродуктов оператор обязан:

-  убедиться в исправности технологического оборудования и трубопроводов;

- убедиться в исправности резервуара и правильности переключения запорной арматуры, соответствии полученного нефтепродукта продукту, находящемуся в резервуаре, в который он будет слит;

-  прекратить заправку машин из резервуара  до окончания слива в него нефтепродукта из цистерны;

-  измерить уровень и температуру нефтепродукта в резервуаре;

-  убедиться в наличии и исправности средств пожаротушения, правильности заземления автоцистерны и исправности ее сливного устройства;

-  принять меры по предотвращению разлива нефтепродукта;

-  убедиться, что двигатель автоцистерны выключен (при сливе самотеком или насосом АЗС);

-  проверить уровень заполнения до планки и убедиться в отсутствии воды с помощью водочувствительной ленты перед сливом нефтепродукта из цистерны, если цистерна не опломбирована;

-  отобрать пробу из цистерны и измерить температуру нефтепродукта в ней.  

     Перед сливом нефтепродукта в резервуар  отбирают пробу из отстойника автоцистерны на наличие воды и механических примесей в нефтепродукте. Проба берется в стеклянную тару, к которой прикрепляется табличка с указанием номера АЗС, марки нефтепродукта, номера товарно-транспортной накладной, номер автоцистерны.

     В опломбированных автоцистернах подтоварную воду не проверяют, а проверяют сохранность пломб.

          В автомобильной цистерне, не имеющей посантиметровой градуировочной таблицы, уровень нефтепродукта не замеряется, а объем определяется по паспорту цистерны полноте её заполнения. Цистерна должна быть заполнена по планку  (на горловине цистерны приваривается планка, указывающая уровень наполнения цистерны) При отклонении уровня бензина в автоцистерне от планки (контрольной риски), например, из-за колебания температуры нефтепродукта в пути, измерение объема нефтепродукта в пределах горловины цистерны следует определять с учетом коэффициентов объемного расширения.

Правилами защиты от статического электричества предусматривается заземление автоцистерны перед сливом из нее нефтепродуктов. Из-за опасности искрообразования при подсоединении «заряженной» автоцистерны

к заземляющему устройству заземление необходимо выполнять вне взрывоопасной зоны медным проводом, причем его сначала необходимо присоединить к автоцистерне, а затем к специальному выводу  заземляющего контура АЗС с помощью болтового зажима.

При сливе нефтепродукта самотеком или насосом АЗС двигатель  автоцистерны должен быть выключен автотранспортное  средство   поставлeно на тормоз, водитель не должен находиться в кабине автомобиля.

 Во время слива не допускается движение автотранспорта на расстоянии менее 8 м от сливных муфт резервуаров.

1.6.2  Хранение нефтепродуктов

Нефтепродукты на АЗС хранятся в подземных и наземных металлических резервуарах.  Время хранения нефтепродуктов на АЗС не установлено, т.е. завоз топлива производится по мере его реализации.

Все изменения о расположение резервуаров, колонок, трубопроводов и арматуры должны производиться в соответствии с документацией, утвержденной главным инженером предприятия, которому подчиняется АЗС и вносится в технологическую схему АЗС.

Технические средства сбора отработанных нефтепродуктов должны обеспечивать их сохранность при хранении, транспортировке и приемо-сдаточных операциях.

1.6.3 Отпуск нефтепродуктов

Заправка автомобилей и других транспортных средств производится через топливораздаточные колонки.

На АЗС при отпуске нефтепродукта, обязаны:

-  следить за исправностью и нормальной работой колонок;  

-  требовать от водителя заправляемого транспорта наблюдения заходом заправки, не допуская переливов нефтепродуктов и нарушения правил пожарной безопасности на АЗС;

-  определять ежемесячно погрешность работы колонок с помощью образцовых мерников 2 разряда; фактическую относительную погрешность колонок (в процентах) записывать, в сменном отчете в графе «погрешность колонки», со знаком «+», если колонка недодает нефтепродукт (разность показаний дозы по счетному ycтpoйству и по шкале на горловине мерника положительна), и со знаком  «-» если колонка «передает» нефтепродукт.

- поддерживать чистоту на территории и внутри помещения АЗС.

Поверка топливораздаточных колонок проводиться в соответствии с существующими нормативными документами. Колонки, не удовлетворяющие требования указанных нормативных документов, к эксплуатации не допускаются.

  1.   Участок  выдачи  ЖМТ  на  МАЗС М-5 Урал 1265 км

1.7.1 Технологические решения участка выдачи ЖМТ

Участок выдачи ЖМТ проектируемой МАЗС предназначен для заправки легкового и грузового  автотранспорта шестью видами жидкого моторного топлива: Аи-95, Аи-92, Аи-80, ДТ, ДТ-Евро, ДЗП. Производительность участка выдачи ЖМТ – 200 заправок в сутки, режим работы - круглосуточный.

  Основные технологические показатели участка выдачи ЖМТ проектируемой МАЗС сведены в таблицу 2.

Основные технологические решения для участка выдачи ЖМТ:

- хранение жидкого топлива  осуществляется в трех двустенных резервуарах: V1=40 м3 (20+20),  V2= 50 м3 (30+20) и V3= 40 м3 (25+15).

- слив топлива из автоцистерн (АЦ) в резервуары хранения осуществляется самотеком через узел слива, оснащенный сливной муфтой, сетчатым фильтром и огнепреградителем;

- слив топлива производится с рециркуляцией паров из резервуара в АЦ и с автоматическим прекращением слива при достижении заданного уровня (95% объема емкости) при помощи клапана перекрытия, расположенного на линии наполнения емкости;

- линия раздачи принята напорная. Продуктовые топливораздаточные колонки (ТРК, 4 шт.) приняты фирмы «GILBARCO VEEDER-ROOT» следующих моделей: SK 700-II OR 6/0/6 E DК VRS DР с дизелем (1 шт.) производительностью 6х40 л/мин, SK 700-II OR 4/0/4 E VRS DР (1 шт.), производительностью 4х40 л/мин и SK 700-II OR 4/0/4 E MS VRS DР (2 шт.), производительностью 4х70 л/мин;

- колонки обеспечены предохранительными расцепителями на раздаточных шлангах и раздаточными кранами-пистолетами с датчиками заполнения бака клиента;

- измерение уровня хранимого топлива обеспечивается уровнемером «Струна-М» с выводом информации на компьютер диспетчера, а также при помощи метрштока;

- проектом предусмотрено устройство УЗА-4 для заземления АЦ при сливе топлива;

- для сбора возможных проливов топлива при сливе из АЦ предусмотрен аварийный резервуар V=10м3;

- на всех линиях слива, раздачи, рециркуляции и деаэрации паров установлены огнепреградители;

- для исключения выбросов паровоздушной смеси топлива в атмосферу при сливных операциях из АЦ применена линия рециркуляции паров по схеме «Резервуар-АЦ» и линия возврата паров «ТРК-Резервуар»;

- контроль герметичности межстенного пространства двустенных резервуаров принят по уровню тосола в расширительных бачках, расположенных в технологических шахтах резервуаров (рабочий агент – тосол);

- подземные топливопроводы, сливные трубопроводы и линия газовозврата приняты гибкими, полиэтиленовыми (подающие топливопроводы и газовозврат от ТРК – двустенные) производства фирмы PetroTechik, Великобритания, имеющие сертификат соответствия Госстандарта России;

- стальные трубопроводы приняты бесшовные горячедеформированные по ГОСТ 8732-78*.

Таблица 2 – Технологические показатели участка выдачи ЖМТ

№ п/п

Наименование показателей

Ед. изм.

Показатели

Примечание

1.

Пропускная способность АЗС:

в час «пик»

авт/час

93

в сутки

авт/сут

200

в год

авт/год

40000

2.

Годовой объем реализации топлива:

бензин Аи-95

м3/год

438

бензин Аи-92

м3/год

1533

бензин Аи-80

м3/год

438

ДТ

м3/год

657

ДТ-Евро

м3/год

657

ДПЗ

м3/год

657

Продолжение таблицы 2

Всего:

м3/год

4380

3.

Объем хранимого топлива:

бензин Аи-95

м³

25

Бензин Аи-92

м³

30

бензин Аи-80

м³

15

ДТ

м³

20

ДТ-Евро

м³

20

ДПЗ

м³

20

Всего:

м³

130

4.

Число ТРК:

3-х топливная

шт.

1

6-ти рукав.

2-х топливная

шт.

3

4-х рукав.

Всего:

шт.

4

1.7.2  Резервуары хранения жидкого моторного топлива

К установке на АЗС проектом предусматривается три двустенных двухсекционных подземных резервуара: V1=40 м3 (20+20),  V2= 50 м3 (30+20) и V3= 40 м3 (25+15).

Для каждой секции двухсекционного резервуара (рисунок 3) должны выполнятся мероприятия, предусмотренные для однокамерного резервуара. Одновременное хранение бензина и дизельного топлива допускается лишь в

различных секциях одного резервуара, секции которого разделены двумя перегородками с обеспечением контроля герметичности межстенного пространства.

Межстенное пространство резервуара заполняется тосолом, что гарантирует высокую коррозионную стойкость внутренних оболочек резервуара и обеспечивает высокую пожарную безопасность. Герметичность резервуаров непрерывно контролируется уровнем тосола в межстенном пространстве при помощи датчика – сигнализатора уровня жидкости в комплекте с  расширительным бачком, установленном над межстенным пространством в шахте каждого топливного резервуара. Верхний уровень тосола должен находиться в расширительном бачке.  

Резервуары выполнены из листовой стали толщиной 4мм. Наружная оболочка резервуаров и подземная часть технологических шахт покрывается одним слоем наплавленного битумно-полимерного материала марки «Элабит» по грунтовке тип «Праймер П-001». Антикоррозионная защита внутренней поверхности резервуаров обеспечивается нанесением маслобензостойкой красно-коричневой эмали ВЛ-515 в один слой. Внутренняя и наружная изоляция резервуаров выполнена в заводских условиях.

Рисунок 3 – Двухсекционный двухстенный резервуар

1 - линия выдачи; 2 – линия обесшламливания» 3 – линия деаэрации; 4 – линия наполнения; 5 – линия контроля уровня топлива; 6 – линия верхнего уровня; 7 – система контроля герметичности межстенного пространства с жидкостным заполнением в комплекте; 8 – патрубок присоединения линии деаэрации.

Вокруг горловин резервуаров выполняются герметичные квадратные стальные юбки, на которые монтируются технологические шахты с откидными крышками для размещения в этих шахтах технологического оборудования резервуаров. По периметру крышки люков обрамляются искробезопасными прокладками. Внутренняя поверхность и надземная часть технологических шахт покрывается грунтовкой ГФ-021 в один слой. Все резервуары устанавливаются на армированные бетонные плиты.

Каждый резервуар оборудуется всем необходимым оборудованием для его полной исправной работы (рисунок 4).

Рисунок 4 – Оборудование двухстенного резервуара

1 – датчик верхнего уровня топлива; 2 – предохранительный клапан системы герметичности резервуара; 3 – шаровой кран линии выдачи; 4 – муфта соединительная линии выдачи; 5 – крышка зачистной трубы; 6 – труба замерная; 7 – люк технологического лаза; 8 – манометр системы герметичности резервуара; 9 – кран трехходовой; 10 – технологический отсек; 11 – линия наполнения; 12 – обратный клапан линии выдачи; 13 – линия выдачи; 14 – линия обесшламливания; 15 – линия деаэрации; 16 – дыхательный клапан; 17 – вентиль линии деаэрации; 18 – крышка замерной трубы; 19 – клапан линии наполнения; 20 – линия флегматизации; 21 – муфта установки системы контроля герметичности межстенного пространства; 22 – огнепреградитель; 23 – модульная коробка

Для каждого резервуара предусмотрено сливное устройство для слива топлива  из автоцистерн, устройство для замера уровня топлива в резервуаре, линия заполнения Ду-80 с ограничителем налива ОН-80А,  линия выдачи Ду-50 с огнепреградителем и шаровым краном КШ-50-16,  линия газовозврата с

огнепреградителем ОП-50АА, погружной насосный агрегат марки Red Jacket

линия деарации и рециркуляции, приемная труба топливораздаточной колонки с приемным клапаном внутри резервуара на конце трубы и.т.д. Резервуар обязательно оснащается дыхательным клапаном, позволяющим во время эксплуатации поддерживать постоянное рабочее давление внутри резервуара.

  1.  Аварийный резервуар. Система сбора аварийного пролива

Проектирование АЗС осуществляется в соответствии с нормами пожарной безопасности, запрещающими аварийный пролив и растекание топлива по территории и за ее пределы. Для локализации всех аварийных проливов при

сливе топлива из автоцистерны предусмотрена канализованная бетонная площадка с трапом, обеспечивающим сбор всех утечек топлива в аварийную подземную емкость.  В качестве аварийной емкости принимают резервуар РГС-10 с одной технологической шахтой подземный одностенный односекционный V=10м3, выполненный из негорючих материалов, исключающих проникновение топлива в грунт. В этот же резервуар производится аварийный слив топлива из автоцистерн. Исходя из этого вместимость этого резервуара должна превышать не менее чем на 10% вместимость используемых на АЗС автоцистерн. Трубопровод отвода аварийных проливов заводится в аварийный резервуар до глубины 100мм от дна, что обеспечивает гидрозатвор между аварийной емкостью и трапом площадки для автоцистерны и исключает режим «падающей струи» при сливе топлива.

1.7.4  Система предотвращения переполнения резервуаров

Резервуары для хранения топлива на линии слива оборудуются системами

предотвращения их переполнения марки ОН-80А по ТУ 3689-035-10524112-2001. При 90% наполнении резервуаров выдаются звуковой и световой сигналы от датчика верхнего уровня, а при 95% наполнении перекрывается сливная труба клапаном перекрытия линии наполнения.

В том случае если вероятность отказа автоматических систем предотвращения переполнения резервуаров превышает 10-3 в год, предусматривают дублирование элементов, полностью исключающее возможность переполнения.

Так же на крышках люка емкости каждой технологической шахты предусмотрен специальный фланец для установки уровнемера типа «Струна-М».

  1.  Погружной турбинный насос марки Red Jacket

На АЗС используется напорная (нагнетательная) технология. Принципиально напорная система подачи топлива отличается от всасывающей системы тем, что вместо обычного центробежного насоса, установленного в ТРК, применяется герметичный погружной насос, помещаемый в резервуар с топливом. Подача каждого вида топлива при этом происходит одним насосом на все ТРК (заправочные пистолеты), предназначенные для этого вида топлива.

На МАЗС к установке предлагаются насосные агрегаты марки Red Jacket 4” типа P75U17-3 и P200U17-4  производства Veeder-Root (рисунок 5).

Характеристики насосных агрегатов P75U17-3 и (P200U17-4), соответственно:

- Назначение – специальное, для подачи ЖМТ на ТРК

- Производительность Q – 200, (330) л/мин

- Давление Р – 2,4, (3,1) бар.

- Потребляемая мощность N – 0,55, (1,50) кВт.

- Напряжение U – 3ф/380B, 50 Гц. 

Насосный агрегат устанавливается на горловину топливного резервуара, таким образом, чтобы точка забора продукта располагалась в нескольких сантиметрах от дна резервуара. В погружных насосах используется соединительная штанга с фиксированной длиной, которая позволяет без специальных инструментов и с высокой точностью установить “мертвую зону” резервуара непосредственно при монтаже оборудования. Поступив в насос, топливо последовательно проходит через турбину, соединительную штангу и контрольную голову насоса. Турбина насоса под давлением подает топливо по системе трубопроводов к топливораздаточным колонкам.

Рисунок 5 - Погружной турбинный насос марки Red Jacket

Конструкция агрегата исключает образование воздушных пробок в системе, что обеспечивает бесшумную и непрерывную струю налива топлива в бак автомобиля клиента и исключает режим кавитации в оборудовании и в трубопроводах. Наличие системы сброса давления и автоматического контроля утечек исключает проливы топлива при эксплуатации и ремонте насосного агрегата. Встроенная система автоматического измерения уровня топлива в резервуарах обеспечивает работу насоса в оптимальном режиме заправки автомобилей. Насос комплектуется обратным клапаном. Исполнение насосного агрегата – взрывозащищенное.

1.7.6  Технологические островки ЖМТ

На  АЗС предусматривается установка четырех технологических островков, которые состоят из модулей раздачи топлива, включающих в себя  четыре двухпостовые раздаточные колонки марок: SK700-

II OR 6/0/6 Е DК VRS DP (1 шт.), SK700-II OR 4/0/4 E VRS DP (1 шт.) и SK700-II OR 4/0/4 E MS VRS DP (2 шт.). В составе модулей имеются аварийные запорные клапаны 2″ BSPT на входе в ТРК, трубопроводы выдачи топлива и газовозврата с системой запорной арматуры и огнепреградителей, электрические коммуникации и система автоматики, собранные в водонепроницаемых отсеках. Кроме того, колонки снабжены:  

-   блокирующими муфтами на шланге топливораздаточных пистолетов;

-   топливораздаточными пистолетами, оборудованными системой автоматического отключения подачи продукта при заполнении бака клиента.

Присоединение модулей к разводящим трубопроводам производится в ваннах, расположенных под островком ТРК. Соединение элементов труб производится при помощи специальных сварочных фасонных изделий производства PetroTechnik. Наружная облицовка наземной части островка производится  панелями из нержавеющей листовой стали, обеспечивающей эстетический вид и искробезопасность.

После монтажа ТРК пространство между ванной и облицовкой заполняется бетоном, островок оборудуется дугами безопасности, что обеспечивает прочность и сохранность его в случае наезда транспорта.

1.7.7   Сливная ванна

Доставка топлива на АЗС производится автоцистернами. До начала слива АЦ подключается к заземляющему устройству УЗА-4, имеющему световую сигнализацию подтверждения заземления. Слив производится самотеком, закрытым способом.                  

Устройство слива топлива из АЦ выполнено в виде законченного модуля (рисунок 6), размещенного в сливной ванне № 1 (для бензинов) и № 2 (для дизельного топлива) в непосредственной близости от стоянки АЦ. В сливных ваннах смонтированы:

- линии слива продукта, оснащенные узлами слива со встроенной сливной муфтой, сетчатым фильтром, огнепреградителем и запорной арматурой. Линии слива выполнены независимо для каждого вида топлива и соединяются трубами с соответствующими отсеками резервуаров;

- линия рециркуляции паров, оснащенной огнепреградителем Ду-50,

 обратным клапаном (в технологической шахте) и запорной арматурой;

- приямок для сбора утечек топлива, которые направляются в подземную аварийную емкость    V=10м3.

Рисунок 6 – Сливное устройство

1 – патрубок сливной; 2 – муфта сливная; 3 – фильтр сливной; 4 – задвижка; 5 – предохранитель огневой; 6 – линия наполнения.

Сливная ванна расположена на отметке, обеспечивающей уклон сливных трубопроводов не менее 0,003 в сторону резервуаров.

Конструкция сливной ванны выполняется из стального листа, крышки ванны – с прокладками из искробезопасной стали по ее периметру.

1.7.8 Деаэрация резервуаров, возврат паров

Линия деаэрации – комплекс оборудования, с помощью которого обеспечивается сообщение с атмосферой свободного пространства резервуара

Система деаэрации паров бензина от топливных и аварийного резервуаров выведена рядом с каждой технологической шахтой на расстоянии 5,55 м от площадки автоцистерны.  Возврат паров от бензиновых ТРК-1, 2 направлен в резервуар № 5 с бензином Аи-80. Возврат паров от дизельных ТРК-2, 3 направлен в резервуар № 1 с ДТ.

Трубопроводы деаэрации выведены на 2,5 м над уровнем площадки, оборудованы дыхательными клапанами с огневыми предохранителями. Выполнены из стальных труб Ду-50, по ГОСТ 8732-78*, окрашиваются эмалью ПФ-115 по ГОСТ 6465-76* за 2 раза по грунтовке ГФ-021, ГОСТ 25129-82*.

  1.  Технологические трубопроводы

На проектируемой МАЗС приняты к укладке  следующие виды труб:

-  двустенные коаксиальные гибкие трубы Д-75/63 производства PetroTechnik для подающих топливопроводов и трубопроводов газовозврата от ТРК, прокладываемых подземно на глубине не менее 0,6 м. Трубы укладываются на песчаное основание Н=100 мм, засыпаются песком толщиной не менее 150 мм.

-  одностенные полиэтиленовые трубы с внутренним покрытием Д-90 производства Petro-  Technik для сливных трубопроводов, прокладываемых в непроходных каналах, заполненных сухим песком и закрытых бетонными крышками. Все стыки элементов канала тщательно замоноличиваются. Наружная поверхность каналов обмазывается горячим битумом толщиной не менее 4 мм. Контроль загазованности внутри каналов производится при помощи переносных газоанализаторов в местах вывода контрольных трубок из каналов.

-   стальные бесшовные трубы Ду-50, 80, 100 по ГОСТ 8732-78* из стали марки 20, изготовленной по группе Б, ГОСТ 8731-74 для системы обвязочных трубопроводов.

Наружная изоляция подземных стальных трубопроводов – полимерная липкая лента, усиленная. Надземные участки труб окрашиваются эмалью ПФ-115 по грунтовке ГФ-021. Стальные трубы внутри технологических шахт и в сливной ванне окрашиваются маслобензостойкой эмалью по грунтовке ГФ-021.

Монтаж и испытание трубопроводов и арматуры производить по СНиП 3-05-05-84, ПБ 03-585-03 и в соответствии с указаниями по монтажу труб производства PetroTechnik. Давление гидравлического испытания Рисп=1,5Рраб, для стальных труб и Рисп=1,25Рраб для полиэтиленовых  труб; Рраб – от 3,1 до 2,4 кг/см2. (СНиП 3.05.05-84, п. 5.4). После испытания резервуары просушить, трубопроводы продуть воздухом.

Межстенное пространство двустенных труб заполняется азотом. Наличие азота в межстенном пространстве двустенных трубопроводов контролируется системой автоматики.

Расстояние между осями труб, уложенных в одной траншее, принять не менее одного диаметра наибольшей трубы. Минимальный радиус изгиба полиэтиленовых труб линейной части подземных трубопроводов – 1,5 м.

  1.  Участок выдачи сжиженного углеводородного газа на МАЗС М-5 Урал          1265км

  1.  Технологические решения участка выдачи СУГ

На участке АГЗС предусматривается заправка автомобилей одорированным сжиженным углеводородным газом, соответствующим ГОСТ 27578-87 и ГОСТ 20448-90 «Газы углеводородные сжиженные топливные для коммунально-бытового потребления». Газы доставляются на АЗС одорированными с интенсивностью запаха не менее трех баллов.

Доставка одорированного этилмеркаптаном сжиженного газа на площадку МАЗС предусматривается транспортной автоцистерной СУГ.

Проектируемые сооружения участка СУГ размещаются в пределах отведенной территории МАЗС из условия рационального размещения инженерных коммуникаций, оптимального технологического режима эксплуатации оборудования и с соблюдением взрывоопасных и санитарных норм в соответствии с нормативными документами.

Согласно заданию на проектирование производительность участка СУГ составляет 100 заправок в сутки. Годовое потребление СУГ составляет 800 м3.

В соответствии с техническими условиями на проектирование проектом предусмотрен монтаж следующего технологического оборудования

(рисунок 7):

-  резервуар горизонтальный стальной (2шт.) V=9200 м3, каждый для приема и хранения СУГ;

-  насосный агрегат типа SIHI (1шт.), производительностью 50л/мин;

-  электронная двухпистолетная топливораздаточная колонка тип FAS-230 (1 шт.), производительностью 50 литров в минуту.

Рисунок 7 – План размещения технологического оборудования СУГ

1 – ТРК СУГ; 2 – резервуары для приема и хранения СУГ; 3 – площадка для автоцистерны; 4 – сбросная свеча; 5 – насосный агрегат.

    Для заправки баллонов автомобилей клиентов  сжиженным углеводородным газом предлагается комплектная газовая заправочная станция производства фирмы «FAS». Данная технологическая топливозаправочная система представляет собой наземное расположение комплектной заправочной станции, состоящая из отдельных модулей, которые на месте монтируются на отдельные рамы. Кроме того, в составе поставки предусмотрен азотный блок состоящий из двух баллонов высокого давления V=40л каждый и специальной арматуры, которые размещаются в металлическом шкафу на расстоянии более десяти метров от площадки  с оборудованием СУГ. В этом же шкафу хранятся шланги высокого давления с длинной не менее 10м.

Так же проектом предусматривается монтаж технологических надземных трубопроводов между блоком приема и блоком раздачи СУГ, продувочной свечи, сбросных труб от системы предохранительных клапанов, а также строительство площадки для автоцистерны и сетчатого ограждения технологической площадки участка СУГ.

1.8.2  Блок приема и хранения СУГ

Блок приема и хранения СУГ состоит их двух резервуаров. Блок имеет в своем составе аппаратуру контроля уровня, запорно-регулирующую арматуру, систему безопасности, средства КИП и А, арматуру для отбора паровой фазы, предохранительную арматуру, обвязочные трубопроводы.

Резервуары приняты цилиндрической формы Д-1200мм, V=9200 м3. Все оборудование устанавливается на бетонную площадку, огражденную бордюром (рисунок 7).

Конструкция резервуаров предусматривает возможность очистки, промывки и полного опорожнения от жидкой и паровой фазы СУГ при проведении ремонта, технического обслуживания и освидетельствования в установленном порядке.

Рисунок 8 – Рама по резервуар СУГ

Насосный агрегат для СУГ принят горизонтальный самовсасывающий, открыто вихревого исполнения с обратной ступенью типа «SIHI» с электродвигателем во взрывозащитном исполнении, установленных на общую раму. Насосный агрегат имеет следующие характеристики:

-  назначение – специальное, для перекачки СУГ;

-  производительность – 40/100 л/мин;

-  температурный диапазон – от минус 400С до плюс 500С;

-  максимальное давление – 4,0 МПа;

-  мощность электродвигателя – 3,6/6,8 кВт;

-  число оборотов – 1450 об/мин;

-  электрообеспечение – переменный ток, 380/600 В, 50 Гц;

-  вес агрегата - 85/95 кг.

Резервуары для хранения СУГ фирмы «FAS» представляются единым модулем в комплекте с насосным агрегатом, устанавливаются надземно, крепятся на общей раме, которая устанавливается на фундамент и подлежит заземлению.

Стандартная комплектация надземно размещенного сосуда СУГ включает:

-   наполняющий клапан – служит для наполнения резервуара СУГ с автоцистерны;

-   клапан для отбора паровой фазы СУГ – служит для отбора паровой фазы СУГ и контроля переполнения резервуара. Клапан оборудован манометром и контрольным клапаном для визуального определения предельного уровня наполнения;

-   угловой клапан – служит для отбора паровой фазы СУГ;

-   указатель уровня – служит для процентного определения уровня жидкой фазы СУГ в резервуаре;

-   предохранительный клапан – служит для предотвращенения недопустимого роста давления в сосуде, давление открытия составляет 1,84 МПа;

-    два ревизионных люка, расположенных в сферических днищах по центральной оси резервуара;

-   люк-лаз – расположенный в сферических днищах верхней оси резервуара;

-   трубопроводы жидкой фазы СУГ (подающий трубопровод к насосному агрегату) с быстродействующим запорным устройством, защищенных от механических повреждений и действия пламени;

-   шаровой клапан;

-   угловой клапан.

После монтажа резервуары теплоизолируют минераловыми прошивными матами  толщиной 300мм, с защитным слоем из тонколистовой оцинкованной стали S=1,5мм до первой запорной арматуры от резервуара ( рисунок 9).

При заправке емкостей используют автоцистерны СУГ, обоудованные донным клапаном. При наполнении резервуаров СУГ работа АЗС приостанавливается.

Рисунок 9 – Тепловая изоляция резервуара СУГ


Заправочные островки оборудованы сигнализаторами довзрывоопасных концентраций с порогами срабатывания превышающим 10% НКПР с подачей звукового и светового сигнала, автоматическим прекращением слива СУГ из автоцистерны и отключением топливораздаточных устройств.

1.8.3  Блок раздачи СУГ

Блок раздачи СУГ состоит из одной электронной газовой топливораздаточной колонки с двумя дисплеями, одним электронным блоком, двумя счетными устройствами и двумя заправочными пистолетами (рисунок 10).

.

Рисунок 10 – Общий вид электронной газовой заправочной колонки фирмы «FAS»

Техническая характеристика электронной двусторонней двухрукавной газовой заправочной колонки типа «FAS-230» используемой на МАЗС:

-  назначение – специальное, для заправки СУГ баллонов автомобилей;

-  производительность - 5/50 л/мин;

-  номинальная заправка – 5л;

-  максимальное рабочее давление – 25 бар;

-  электрообеспечение – 230В/50 Гц.

Номинальный уровень наполнения – 85% общего объема газовой емкости автомобиля. Контроль уровня происходит с помощью контрольного клапана предельного наполнения. Соединительные узлы для подающего (жидкая фаза) и обратного (газовая фаза) должны быть соединены с соответствующими узлами стационарного трубопровода.

Раздаточная колонка устанавливается на раме заправочного островка, которая представляет собой сварную конструкцию высотой 200мм. Торцевые части блока закруглены. Подвод трубопроводов жидкой и паровой фазы СУГ к ТРК осуществляется снизу. Для защиты ТРК от повреждений транспортными средствами на заправочном островке устанавливаются защитные дуги. Крепление защитных дуг к оборудованию, к его фундаментам и опорным конструкциям не допускается.

На МАЗС для приема, хранения и выдачи СУГ допускается заправка баллонов только газобаллонных автомобилей. Заправка других баллонов, в том числе бытовых категорически запрещается. Так же запрещается работа МАЗС при температуре ниже минус 400С.

1.8.4 Сбросные и продувочные трубы участка СУГ

При выходе рабочих параметров внутри резервуара для СУГ за пределы допустимых значений и на случай возникновения аварийных ситуаций в составе поставки оборудования СУГ предусмотрена установка клапанов на резервуарах хранения СУГ. Сброс газа производится в сбросную трубу.

Высота сбросной трубы паров СУГ должна отвечать следующим условиям:

-  быть выше пешеходных дорог АЗС, расположенных в радиусе 150d по горизонтали от указанной трубы ( где d – диаметр сбросной трубы) и прилегающей к сбросной трубе площадки не менее чем на 2+50d, но не менее чем на 3 м;

-  быть выше максимальной высоты транспортного средства допускаемого проектом АЗС для заправки е менее чем на hм+50d (где hм -максимальная высота транспортного средства), в случае если проезды для указанных транспортных средств, расположены по отношению к сбросной трубе на расстоянии менее 150d по горизонтали.

Проектом предлагается монтаж единой для обоих резервуаров сбросной трубы 57х3,5 высотой 5м, которая монтируется на площадке резервуаров и крепится к опоре, установленной на монолитный фундамент (рисунок 11). Сброс продувочных газов из системы оборудования СУГ предлагается производить через продувочную свечу Ду-25, высотой 6,5 м.

Рисунок 11 – Сбросная свеча резервуара СУГ

Сбросная труба должна быть защищена в следствии пожара теплоизоляцией в виде полуцилиндров толщиной 40мм, внутренним диаметром 57 мм марки ПЦ 100-1000.57.40. Теплоизоляцию фиксировать навивкой проволоки диаметр на 2 мм.

1.8.5 Трубопроводы жидкой и паровой фазы СУГ

На МАЗС разрешается надземная и подземная прокладка трубопроводв.

Подземно прокладываются:

- газопроводы СУГ от насосного агрегата до ТРК для подачи топлива потребителям. Трубопроводы прокладываются в лотках и

заглублены в технологических шахтах на глубине не менее 0,7м, исключающих возможность проникновения жидкой фазы топлива ( при возможных утечках) за их пределы. Лотки слеует заполнять, с уплотнением негорючим материалом, например песком при толщине подушечки не менее 100мм и засыпкой на толщину не менее 300мм с последующим перекрытием лотков армированным бетоном, в местах опусков и подъемов устанавливаются контрольные трубки;

- трубопроводы СУГ и его паров, проходящие  в зоне возможного присутствия водителей и пассажиров прокладываются в футляре, оснащенном контрольной трубкой.

Надземно разрешается прокладывать трубопроводы на опорах не менее 0,5м в местах защищенных от механических повреждений, например по газонам на расстоянии 1,5 м от проезжей части.

Трубопроводы жидкой и паровой фазы СУГ к  ТРК запроектированы из стальных бесшовных труб по ГОСТ 8732-78* (группа В). Надземные участки трубопроводов СУГ окрашены эмалью в заводскихвой условиях  и оснащаются теплоизоляцией, обеспечивающей предотвращение прогрева стенок. Трубопроводы СУГ от технологического блока до раздаточных колонок прокладываются подземном  (каналах), исключающих их повреждения от транспортных средств.

1.8.6  Площадка под оборудование и для автоцистерны СУГ

Все технологическое оборудование установки  СУГ монтируется на площадке с твёрдым покрытием из монолитного бетона, ограждается бортовым камнем высотой 200 мм.

Площадка для АЦ с СУГ выполняется из монолитного бетона, ограждается бордюрным камнем высотой не менее 150 мм, обеспечивающим предотвращением растекание пролива жидкой фазы СУГ за её пределы при аварийной разгерметизации емкости или арматуры АЦ. По торцам площадки предусмотрены пандусы и валики из бетона высотой 200 мм.

На площадке АЦ предусмотрена стационарная система водяного орошения на случай возникновения пожара на АЦ.   

  1.  РАСЧЕТНАЯ ЧАСТЬ

        2.1 Расчет продолжительности слива топлива из автоцистерны самотеком

2.1.1Расчет продолжительности слива бензина из автоцистерны самотеком

Исходные данные:

Марка автоцистерны АЦ-8,5-255;

Длина приемного трубопровода резервуара

Диаметр приемного трубопровода резервуара

Длина сливного патрубка

Диаметр сливного патрубка

h(0)=4;

Давление при сливе нефтепродукта S=53000 Па;

Плотность бензина  

Потери в трубопроводе

Начальный взлив в резервуаре АЗС равен 1,2м;

Объем резервуара V=30;

Резервуар оснащен дыхательным клапаном СМДК-50

Различием диаметров местных сопротивлений и приемного трубопровода пренебречь.

Для АЦ-8,5-255 находим:

А=2,17м; В=1,22м;

Для дыхательного клапана СМДК-50  

Коэффициент гидравлического сопротивления рукава автоцистерны определяем по формуле

dу- диаметр рукава автоцистерны.

Рисунок 12 – Схема слива топлива из автоцистерны самотеком

Полагая, что течение бензина происходит в зоне смешанного трения турбулентного режима, находим величину функции

где    dт – диаметр приемного трубопровода резервуара;

 d0 – диаметр сливного патрубка.

Принимая в первом приближении , вычисляем коэффициент расхода сливной коммуникации

=

Параметры приемного резервуара на АЗС :

  диаметр

  длина Lp =5,93. Следовательно

                                              

Отсюда начальный объем бензина в приемном резервуаре

=

Так как вместимость автоцистерны равна 8,5, то после завершения слива объем бензина в приемном резервуаре станет равным . Следовательно, на момент окончания слива

Соответствующую безразмерную высоту заполнения резервуара найдем из уравнения

           

Рисунок 13 – График для определения величин  

Методом последовательных приближений находим, что в данном случае z=0,66. Следовательно, изменение высоты взлива в резервуаре

Средняя скорость нефтепродукта в начале и конце слива

м/с;

где   Ps – давление газового пространства, Па;

Pа – атмосферное давление, Ра= 101325 Па;

РкдА- давление срабатывания дыхательного клапана, Па.

    Средняя скорость нефтепродукта в приемном трубороводе

Число Рейнольдса и коэффициент гидравлического сопротивления для приемного трубопровода

Так как в данном случае

 

где kэ – эквивалентная шероховатость, для пластиковых труб kэ =0,0003 ;

d-диаметр рукава автоцистерны.

                                    ,   

то в среднем слив происходит зоне квадратичного трения турбулентного режима и поэтому

 

Уточненная величина функции  по формуле

                                                  

Уточненная величина коэффициента расхода

Так вновь найденное значение  отличается от первоначального

Что меньше допустимой погрешности инженерных расчетов (5%), а значит уточнять величину средней скорости нет необходимости.

Площадь сечения сливного трубопровода

Время полного слива автоцистерны

2.1.2Расчет продолжительности слива Дт евро из автоцистерны самотеком

Исходные данные:

Марка автоцистерны АЦ-8,5-255;

Длина приемного трубопровода резервуара

Диаметр приемного трубопровода резервуара

Длина сливного патрубка

Диаметр сливного патрубка

h(0)=4;

Давление при сливе нефтепродукта S=53000 Па;

Плотность бензина  

Потери в трубопроводе

Начальный взлив в резервуаре АЗС равен 1,2м;

Объем резервуара V=20;

Резервуар оснащен дыхательным клапаном СМДК-50

Различием диаметров местных сопротивлений и приемного трубопровода пренебречь.

Для АЦ-10-260 находим:

А=2,17м; В=1,22м;

Для дыхательного клапана СМДК-50  

Коэффициент гидравлического сопротивления рукава автоцистерны определяем по формуле

dу- диаметр рукава автоцистерны.

Полагая, что течение ДТ евро  происходит в зоне смешанного трения турбулентного режима, находим величину функции

где    dт – диаметр приемного трубопровода резервуара;

 d0 – диаметр сливного патрубка.

Принимая в первом приближении , вычисляем коэффициент расхода сливной коммуникации

=

Параметры приемного резервуара на АЗС :

  диаметр

  

                                              

Отсюда начальный объем бензина в приемном резервуаре

=

Так как вместимость автоцистерны равна 8,5, то после завершения слива объем дт евро в приемном резервуаре станет равным 18,74. Следовательно, на момент окончания слива

Соответствующую безразмерную высоту заполнения резервуара найдем из уравнения

           

Рисунок 13 – График для определения величин  

Методом последовательных приближений находим, что в данном случае

=0,785. Следовательно, изменение высоты взлива в резервуаре

Средняя скорость нефтепродукта в начале и конце слива

м/с;

где   Ps – давление газового пространства, Па;

Pа – атмосферное давление, Ра= 101325 Па;

РкдА- давление срабатывания дыхательного клапана, Па.

    Средняя скорость нефтепродукта в приемном трубороводе

Число Рейнольдса и коэффициент гидравлического сопротивления для приемного трубопровода

Так как в данном случае

 

где kэ – эквивалентная шероховатость, для пластиковых труб kэ =0,0003 ;

d-диаметр рукава автоцистерны.

                                    ,   

то в среднем слив происходит зоне квадратичного трения турбулентного режима и поэтому

 

Уточненная величина функции  по формуле

                                                  

Уточненная величина коэффициента расхода

Так вновь найденное значение  отличается от первоначального

Что меньше допустимой погрешности инженерных расчетов (5%), а значит уточнять величину средней скорости нет необходимости.

Площадь сечения сливного трубопровода                

       

 м2

Время полного слива автоцистерны

2.2  Гидравлический расчет всасывающей линии трубопровода 

        Гидравлический расчет будем вести при среднеминимальной  температуре нефтепродукта Аи-92

Кинематическая вязкость ;

Длина всасывающей линии L = 70,7 м;

Наружный диаметр всасывающего трубопровода Dвс =0,063 м;

Толщина стенки трубопровода  м;

Геодезическая отметка резервуара z рез = 324,7 м;

Геодезическая отметка ТРК  м;

Эквивалентная шероховатость труб ;

Производительность насоса Q=0,0033

Таблица 3 - Местные сопротивления на всасывающей линии

Тип местного сопротивления

Количество

Фильтр

0

1,7

Задвижка

3

0,15

Поворотов

5

0,3

  1.  Находим внутренний диаметр трубопровода

 

  1.  Скорость движения потока

  1.  Число Рейнольдса для потока нефтепродуктов в трубопроводе

  1.  Критические значения числа Рейнольдса

      Так как , режим турбулентный, т.е. поток нефтепродукта находится в области гидравлически гладких труб, для которой коэффициент гидравлического сопротивления вычисляется по формуле

  1.  Потери напора по длине трубопровода

  1.  Потери напора на местные сопротивления

  1.  Потеря напора на преодоление сил тяжести

  1.  Полная потеря напора на всасывающей линии

  1.  Проверка всасывающего трубопроводов на холодное кипение паров бензина. Условие, которое должно выполнятся, чтобы не произошло срыва потока

 Па – давление насыщенных паров бензина при 26,9 С

Па – атмосферное давление.

Условие выполняется.

2.3 Расчет на прочность полиэтиленовых труб

2.3.1 Расчетные характеристики полиэтиленовых труб

Расчетное сопротивление материала труб R следует определять по формуле

,

где RHнормативное длительное сопротивление разрушению материала труб из условия работы на внутреннее давление, RH =1,3МПа;

  KYкоэффициент условий работы трубопровода, KY =0,5;

      Кскоэффициент прочности соединения труб, Кс =0,95[13] . 

Модуль ползучести материала труб Е, принимается с учетом его изменения при длительном действии нагрузки и температуры на трубопровод по формуле

где Е0 — модуль-ползучести материала трубы при растяжении, Е0 =32 МПа,в зависимости от проектируемого срока службы трубопровода и величины действующих в стенке трубы напряжений;

      Ке — коэффициент, учитывающий влияние температуры на деформационные свойства материала труб, Ке =0,40.

2.3.2 Расчет нагрузок и воздействия на трубопровод

При расчете трубопроводов следует учитывать нагрузки и воздействия, возникающие при их сооружении, испытании и эксплуатации.

Рассчитаем нормативную нагрузку от массы 1 м трубопровода

где gT—плотность материала трубопровода, кг/м3;

 D наружный диаметр трубы, м;

 d—толщина стенки трубы, м.

В тех случаях, когда для трубопровода требуется устройство наружной изоляции, в нормативную нагрузку qHT следует включать нагрузку от массы изолирующего слоя.

Нормативная вертикальная нагрузка от давления грунта на трубопровод

где gГР— плотность грунта, кг/м3;

 h—расстояние от верха трубопровода до поверхности земли, м, назначаемое из условия исключения возможности воздействия на трубопровод динамических нагрузок.

Нормативную нагрузку от гидростатического  давления грунтовых вод, вызывающую всплытие трубопровода

где  gВ — плотность воды с учетом растворенных в ней солей, Н/м3 (кгс/м3),

    D — наружный диаметр трубопровода с учетом изоляционного покрытия, м.

          2.3.3 Проверка прочности и устойчивости подземных трубопровод

Подземные трубопроводы следует проверять по прочности и деформациям поперечного сечения.

Расчетные сопротивления материала труб для подземного трубопровода следует определять по формуле

где Rрасчетное сопротивление материала труб;

   К1 коэффициент условий прокладки подземного трубопровода, принимаемый равным 0,8—для трубопроводов, прокладываемых в местах, труднодоступных для рытья траншей в случае его повреждения; 0,9—для трубопроводов, прокладываемых под усовершенствованными покрытиями; 1,0—для остальных трубопроводов.

Несущая способность подземных трубопроводов должна проверяться путем сопоставления предельно допустимых расчетных характеристик материала трубопровода с расчетными нагрузками на трубопровод, при этом внешние, нагрузки приводятся к двум эквивалентным противоположно направленным вдоль вертикального диаметра линейным нагрузкам.

Полная расчетная приведенная (эквивалентная) линейная нагрузка Рпр

где  Q — равнодействующие   расчетных   вертикальных   нагрузок;

   b — коэффициент приведения нагрузок;

   h — коэффициент, учитывающий боковое давление грунта на трубопровод.

- расчетная нагрузка на трубопровод от транспорта;

  - расчетная нагрузка на трубопровод от равномерно распределенной нагрузки на поверхности засыпки.

        Расчетная нагрузка на трубопровод от транспорта

где nтр — коэффициент перегрузки от транспортных нагрузок, hтр =1,4;

  qНТР—нормативное равномерно распределенное давление от транспорта, qНТР =10Н/м2;

    D—наружный диаметр трубопровода, м.

Расчетная нагрузка на трубопровод от равномерно распределенной нагрузки на поверхности засыпки

где РГР—параметр, характеризующий жесткость засыпки, МПа (кгс/см2), рассчитываемый по соотношению

.

  РЛпараметр, характеризующий жесткость трубопровода

где ЕГР —модуль деформации грунта засыпки, принимаемый в зависимости от степени уплотнения грунта: для песчаных грунтов—от 8,0 до 16,0 МПа), для супесей и суглинков—от 2,0 до 6,0 МПа), для глин—от 1,2 до 2,5 МПа;

Е —модуль ползучести материала труб;

nP — коэффициент перегрузки от нагрузок на поверхности грунта.

Значение коэффициента приведения нагрузок b следует принимать зависимости от способа опирания трубопровода на грунт:

а) для нагрузок от давления грунта: при укладке на плоское основание—0,75; при укладке на спрофилированное основание с углом охвата трубы 2а= 70°—0,55, 2а =90°— 0,50, 2а = 120° — 0,45;

б) для нагрузок от массы трубопровода и транспортируемого вещества: при укладке на плоское основание — 0,75, при укладке на спрофилированное основание с углом охвата трубы 2а = 75°— 0,35, 2а =90°— 0,30, 2а= 120°—0,25.

Величину коэффициента h, учитывающего боковое давление грунта на трубопровод, следует принимать в зависимости от степени уплотнения засыпки в пределах от 0,85 до 0,95.

Несущую способность подземных трубопроводов по условию прочности следует проверять на действие только внутреннего давления транспортируемого вещества, при этом полное расчетное приведенное (эквивалентное) напряжение sпр, МПа (кгс/см2), вычисленное в соответствии с требованиями п. 5,18 должно удовлетворять неравенству

условие выполняется.

2.4  Расчет оболочки резервуара

В горизонтальной оболочке, покоящейся на сплошном основании, под действием веса нефтепродукта и собственного веса возникают изгибающие

моменты М1, М2, стремящиеся сплющить оболочку – увеличить горизонтальный диаметр. При наличии избыточного давления в стенках корпуса, возникают равномерно распределенные растягивающие напряжения, способствующий сохранению формы корпуса. Поэтому корпус резервуара, рассчитанный на действие изгибающих моментов, обязательно должен быть проверен на растягивающие напряжения от внутреннего избыточного давления.

Изгибающий момент, возникающий в оболочке под действием гидростатического давления нефтепродукта равен

 где R-радиус резервуара;

     φ- коэффициент, зависящий от условия закрепления днища резервуара по контуру (φ=0,5-0,75).

Изгибающий момент возникающий от собственного веса оболочки ( на единицу длины оболочки)

,

где δ- толщина стенки резервуара,

плотность стали, кг/м3.

Максимальные значения моментов М1, М2 будут при  т.е. по концам горизонтального диаметра

Момент сопротивления определяется по формуле

Расчетное напряжение на изгиб

Подземные резервуары подвержены не только внутреннему давлению от нефтепродукта, но и наружному давлению грунта и действию вакуума.

Грунт сдавливает оболочку резервуара неравномерно. Вертикальное давление грунта

а горизонтальное

где плотность грунта;

 h- расстояние от поверхности земли до рассматриваемой точки;

 α –угол внутреннего трения грунта.

Для практических расчетов эллиптическую эпюру давления грунта заменяют круговой с постоянной интенсивностью давления (рисунок 13).

Рисунок 13 – Эпюра давлений грунта на горизонтальный резервуар

Величина изгибающего момента (на единицу длину оболочки) от давления грунта определяется по формуле

где -глубина заложения оси резервуара в грунт;

 R- радиус оболочки резервуара.

Как указывалось выше, оболочка под влиянием внешнего давления может потерять свою форму. Это может произойти еще задолго до того, как напряжения в ней достигнуть расчетных значений. Поэтому оболочку подземного резервуара необходимо всегда проверять на устойчивость цилиндрической формы в радиальном направлении по формуле

где Е-модуль упругости;

     l- расстояние между ребрами жесткости резервуара, l=1,5D.

Для устойчивости формы резервуара внешнее давление грунта  должно быть меньше  на величину коэффициента запаса устойчивости n, равную

           

Условие выполняется.     

2.5 Расчет днища резервуара на прочность

Вместимость резервуара V=50м3;

Диаметр резервуара D=2,75м;

Избыточное давление

Давление вакуума

Толщина днища

Резервуар выполнен из стали с  кН/см2.

При расчете на прочность будем учитывать избыточное и гидростатическое давления жидкости (бензин) =740 кг/м3. Примем угол между образующей и его осью (рисунок 14) β=60С°.

Рисунок 14 –Воздействие на коническое днище.

Суммарное гидростатическое и избыточное давление на уровне центра днища

Проверим на прочность днище

,

т.о. ,

значит прочность днища достаточна.

Проверка днища на устойчивость по формуле

=

,

устойчивость днища обеспечена.

2.6 Физические свойства СУГ

Пересчет весового состава паровой фазы в молярный производится по формуле

  в процентах,                 (2.2.1)

  в долях единицы, где (2.2.2)

- массовая доля i-го компонента;

- молярная масса i-го компонента, г/моль;

;

;

    или 0,664;

   или 0,336;

Таким образом, состав паровой фазы в объемах (молярных) процентах и объемных долях будет равен:

С3Н8=66,4  (0,664);

С4Н10=33,6    (0,336);

(2.2.3)

Средняя молекулярная масса газовой смеси

 (2.2.4)

- массовая доля i-го компонента;

- молярная масса i-го компонента, г/моль;

Средняя плотность газовой смеси при нормальных условиях:

а) по закону Авогадро:

.(2.2.5)

б) по правилу смешения:

(2.2.6)

где ρ1, ρ2,……..ρn - плотность насыщенных паров компонентов широких фракций углеводородов при температуре 0 0С.

Псевдокритическая (среднекритическая) температура смеси

(2.2.7)

где , ,……..- критическая температура компонентов широких фракций углеводородов при температуре 0 0С.

Среднекритическое (псевдокритическое) давление

(2.2.8)

где , ,…….. - критическое давление компонентов широких фракций углеводородов при температуре 0 0С.

Удельная газовая постоянная газовой смеси заданного выше состава может быть определена по правилу смещения

,(2.2.9)

где R1, R2, ………Rn - удельные газовые постоянные компонентов, входящих в газовую смесь.

Rсм=0,664∙188,68+0,336∙143,08=124,53+48,65=173,2 Дж/кг∙К.

Состав жидкой фазы сжиженного газа определяется в следующей последовательности.

а) Определяем общее давление равновесной системы пар-жидкость. Согласно объединенному уравнению законов Рауля и Дальтона

yiP=xiθi,        (2.2.10)

концентрация компонента в жидкой фазе будет

.             (2.2.11)

Так как состав жидкой фазы равен

х1+х2+…+хn=1,

то из предыдущих двух уравнений можно записать

,   (2.2.12)

откуда общее давление системы пар-жидкость равно

,     (2.2.13)

МПа,

где θ12, ………θn - упругость компонентов газовой смеси в чистом виде берутся из справочных таблиц.

б) По уравнению  определяем состав жидкой фазы в долях единицы и процентах:

 (0,55);

 (0,63);

Таким образом, состав жидкой фазы в процентах и долях единицы равен:

С3Н8=39  (0,39);

С4Н10=61   (0,61);

.

  1.   ЭКОНОМИЧЕСКАЯ ЧАСТЬ

Долгосрочные инвестиции в промышленное производство и транспорт составляют основу развития экономики любой отрасли. Особенно важен этот фактор для развития нефтегазодобывающей промышленности и трубопроводного транспорта, требующих значительных сумм капиталовложений.

Методика оценки экономической эффективности инвестиций – один из важнейших вопросов. Основное внимание в данной работе уделяется оценке эффективности инвестиций на предприятиях нефтеперерабатывающей промышленности.

3.1 Методика оценки экономической эффективности инвестиционных проектов

Инвестиции – средства (денежные средства, ценные бумаги, иное имущество, в том числе имущественные права, имеющие денежную оценку),

Вкладываемые в объекты предпринимательской и (или) иной деятельности с целью получения прибыли и (или) достижения иного полезного эффекта.

Различаются:

–  капиталообразующие (реальные) инвестиции (real investment), обеспечивающие создание и воспроизводство фондов; состоят из капитальных вложений, оборотного капитала, а также иных средств, необходимых для проекта;

–  портфельные инвестиции (portfolio investment) – помещение средств в финансовые активы.

Капитальные вложения – инвестиции в основной капитал (основные средства), в том числе затраты на новое строительство, расширение, реконструкцию и техническое перевооружение действующих предприятий, приобретение машин, оборудования, инструмента, инвентаря, проектно-изыскательские работы и другие затраты.

Проект – комплекс действий (работ, услуг, приобретений, управленческих операций решений), направленных на достижение сформулированной цели.

Инвестиционный проект (ИП) – обоснование экономической целесообразности, объема и сроков осуществления капитальных вложений, в том числе необходимая проектно-сметная документация, разработанная в соответствии с законодательством РФ и утвержденными в установленном порядке стандартами (нормами и правилами), а также описанием практических действий по осуществлению инвестиций (бизнес-план).

Эффективность инвестиционного проекта характеризуется системой показателей, отражающих соотношение затрат и результатов применительно к интересам его участников.

Необходимо различать понятия: экономическая эффективность (efficiency) и экономический эффект (effect).

Под экономическим эффектом в общем случае понимается величина экономии затрат в рублях в результате осуществления какого-либо мероприятия или их совокупности. В традиционных технико-экономических расчетах чаще всего используется величина годового экономического эффекта, т.е. экономии средств за год. Под экономической эффективностью понимается относительная величина, получаемая в результате сопоставления экономического эффекта с затратами, вызвавшими этот эффект. Причем это может быть простое отношение эффекта к соответствующим затратам (efficiency ratio) и более сложные отношения.

Анализ эффективности ИП основывается на моделировании денежных потоков (cash flow), складывающихся в течение всего срока жизни проекта. Денежный поток (поток реальных денег) складывается из всех притоков и оттоков денежных средств в некоторый момент времени (или на некотором шаге расчета).

Приток денежных средств равен величине денежных поступлений (результатов в стоимостном выражении) на соответствующем шаге.

      Отток равен платежам  (затратам) на этом шаге.

Срок жизни проекта (расчетный период) должен охватывать весь жизненный цикл разработки и реализации проекта вплоть до его прекращения. Срок жизни проекта включает в себя следующие основные стадии (этапы):

– инвестиционную;

– эксплуатационную;

– ликвидационную.

3.1.1 Показатели эффективности инвестиционных проектов

Для оценки экономической эффективности инвестиционных проектов могут использоваться следующие критерии:

– чистый дисконтированный доход (ЧДД);

– индекс доходности (ИД);

– внутренняя норма доходности (ВНД);

– срок окупаемости с учетом фактора времени (дисконтирования).

Чистый дисконтированный доход определяется как сумма следующего вида:

(1)

или

,                                                                                                

где  – шаги расчета;

      – стоимостная оценка результата реализации проекта (приток денежных средств);

      – стоимостная оценка затрат, включая капитальные вложения (отток денежных средств);

     – срок жизни проекта (расчетный период);

    – ставка (норма) дисконта;

    – поток реальных денег для проекта в целом или отдельного его участника;

    – коэффициент дисконтирования в момент времени .

Расчетный период разбивается на шаги, в пределах которых производится агрегирование данных, используемых для оценки финансовых показателей. Шаги расчета определяются их номерами (0,1…). Время в расчетном периоде измеряется в годах или долях года и отсчитывается от фиксированного момента, принимаемого за базовый (обычно в качестве базового принимается момент начала или конца нулевого шага).

Норма дисконта (привидения) отражает возможную стоимость капитала, соответствующую возможной прибыли инвестора, которую он мог получить на туже сумму капитала, вкладывая его в другом месте, при допущении, финансовые риски одинаковы для обоих вариантов инвестирования. Другими словами, норма дисконта должна являться минимальной нормой прибыли, ниже которой предприниматель счел бы инвестиции невыгодными для себя.

Для инвестиционного проекта в качестве нормы дисконта иногда используется ставка процента, которая уплачивается получателем ссуды.

Если из состава затрат  исключить капитальные вложения (инвестиции) , то формула (1) примет следующий вид:

,

где  – затраты на t-м шаге без учета капитальных вложений;

       – дисконтированные капитальные вложения, определяемые по формуле:

               (2)

Если разница между стоимостными оценками результатов и затрат  постоянна в течение всего срока жизни проекта , то формула (2) может быть преобразована в следующий вид:

В данном случае величина  получена как сумма членов геометрической прогрессии.

Значения коэффициентов  и  можно получить из специальных таблиц дисконтированных величин.

Величину  можно представить в виде

,

где  – выручка от реализации продукции (услуг) на t-м шаге;

      – амортизационные отчисления выплаты из прибыли на t-м шаге.

В свою очередь:

,

где  – прибыль до налогообложения на t-м шаге.

Следовательно:

,

где  – чистая прибыль на t-м шаге.

Если рассчитанный ЧДД положителен, то прибыль инвестиций выше нормы дисконта и проект следует принять. Если ЧДД равен нулю, то прибыльность равна норме дисконта. Если ЧДД меньше нуля, то прибыльность инвестиций ниже нормы дисконта и от проекта следует отказаться.

При сравнении альтернативных проектов предпочтение должно отдаваться проекту с большим значением ЧДД.

Индекс доходности (ИД) определяется как отношение суммы дисконтированных эффектов к сумме дисконтированных капитальных вложений:

или

.

Индекс доходности тесно связан с ЧДД. Если ЧДД положителен, то ИД >1. Если ЧДД отрицателен, то ИД <1. Если ИД>1, то проект эффективен; если   ИД <1 – неэффективен.

Внутренней нормой доходности (ВНД) называется такое положительное число , что при норме дисконта  чистый дисконтированный доход проекта обращается в 0, при всех больших значениях Е – отрицателен, при всех меньших значениях Е – положителен. Если не выполнено хотя бы одно из этих условий, считается, что ВНД не существует.

Экономический смысл показателя ВНД состоит в том, что он показывает максимальную ставку платы за инвестиции, при которой они остаются безубыточными. Таким образом, ВНД может трактоваться как нижний гарантированный уровень прибыльности инвестиционных затрат.

ВНД определяется из уравнения, которое можно записать в виде:

.

Для оценки эффективности ИП значение ВНД необходимо сопоставлять с нормой дисконта Е. Инвестиционные проекты у которых ВНД >Е, имеют отрицательный ЧДД и поэтому неэффективны.

Сроком окупаемости с учетом дисконтирования называется продолжительность периода от начального момента до момента окупаемости. Моментом окупаемости с учетом дисконтирования называется тот наиболее ранний момент времени в расчетном периоде, после которого текущий ЧДД становится и в дальнейшем остается неотрицательным (иными словами, результаты реализации проекта превышают первоначальные капитальные вложения и другие затраты).

При определении срока окупаемости с учетом дисконтирования

используется следующая формула:

Расчет срока окупаемости можно проводить графически.

Применение программного продукта Microsoft Excel 5.0a (русифицированная версия) позволяет автоматизировать расчет показателей ЧДД, ВНД, срок окупаемости. С этой целью используются встроенные в Ms Excel стандартные финансовые функции. При этом в качестве аргументов при проведении расчетов вводятся значения денежных потоков .

Любой инвестиционный проект должен оцениваться не изолированно, а рассматриваться с учетом его связей с другими проектами и текущей деятельностью предприятия. В простейшем случае, когда предприятие пытается реализовать только один новый инвестиционный проект, необходимо рассмотреть, по меньшей мере, две альтернативные возможности:

1) реализация проекта (ситуация «с проектом»)

2) отказ от реализации проекта (ситуация «без проекта»).

Приближенным методом оценки ИП на действующем предприятии является так называемый приростный метод. В этом случае в качестве выручки от реализации продукции, себестоимости и других показателей проекта принимается изменение соответствующих показателей по предприятию в целом, обусловленное реализацией проекта.

Для расчета денежных потоков проекта могут использоваться различные виды цен: базисные, прогнозные, мировые.

Расчет стоимости и объем строительно-монтажных работ определяем с учетом коэффициентов на проектные и изыскательные работы для строительства каждого объекта АЗС.

Таблица 4

Сводный сметный расчет стоимости строительства

ООО «АЗС-Строй»

Сметная стоимость 103532,8 тыс.руб.

Составлен в ценах по состоянию на  2015г.

ООО « АЗС-Строй»

(наименование организации)

СВОДНЫЙ  СМЕТНЫЙ РАСЧЕТ СТОИМОСТИ СТРОИТЕЛЬСТВА

«МАЗС на а/д Урал М-5 1265км,н.п.Александровка»

                                                                                                                

№ пп

Номера сметных расчетов и смет

Наименование глав, объектов, работ и затрат

Общая сметная стоимость тыс. руб.

строительных работ

1

2

3

4

1

ЛС №2-1/1

ЛС №2-6/8

Основные объекты строительства МАЗС

27544,5

 

 

Итого по Главе 2

27544,5

Итого по Главам 1-2

27544,5

СМР=8,56; ОБ=3,12

2

ЛС №4-1/1   -

ЛС №41/10

Объекты энергетического хозяйства

8121,4

Итого по Главе 4

8121,4

Итого по Главам 1-4

35665,9

3

ЛС №6-1/1 –

ЛС №6- 2/1

Наружные сети и сооружения водоснабжения

3921,1

Итого по Главе 6

3921,1

Итого по Главам 1-6

39586,1

4

ЛС №7 - 1/1 –

ЛС №7 – 1/6

Благоустройство и озеленение территории

23121,7

Итого по Главе 7

23121,7

Итого по Главам 1-7

62707,8

5

ГСН 81-05-01 2001 п.5.9

Временные здания и сооружения

895,8

Итого по Главе 8

895,8

Итого по Главе 1-8

          63603,6

6

ГСН 81-05-02-2001 п.6.2

ГС РФ

НДС -81-1-91

Прочие работы и затраты

            4261,8

Итого по Главе 9

            4261,8

Итого по Главам 1-9

67865,4

7

смета

Проектные работы и изыскательние работы

            2395,0

Итого по Главе 12

2395,0

Итого по Главам 1-12

70260,4

8

МДС 81-35.2004,п.3.5.9.1

Непредвиденные затраты 3%

1145,9

Итого с непредвиденными затратами

71406,3

9

(аналог)

Дополнительные затраты в текущих ценах

16327,1

Итого с дополнительными затратами

87733,3

10

Зак.РФ №63-ФЗ от 25.04.95г.

Налог на добавленную стоимость  НДС 18%

15792,0

Итого по сводному сметному расчету:

103525,3

Всего по сводному сметному расчету :

103532,8

                   4 БЕЗОПАСНОСТЬ И ЭКОЛОГИЧНОСТЬ ПРОЕКТА

4.1 Общие сведения о проектируемом объекте

Автозаправочная станция предназначена для заправки легкового и грузового автотранспорта шестью видами жидкого моторного топлива: Аи-95, Аи-92, Аи-80 и ДТ, ДТ-Евро, ДТ (зимнее), а также сжиженным углеводородным газом. Завоз топлива осуществляется автомобильным транспортом (бензовозами и газовозами) объемом секций до 9 м3.

В целях экологической безопасности все объекты МАЗС расположены на отдельных площадках.

Для исключения выбросов паровоздушной смеси топлива в атмосферу при сливных операциях применена линия рециркуляции паров по схеме «резервуар – автоцистерна» и линия возврата паров «бензобак – резервуар».

Для сбора возможных проливов при топлива из автоцистерны предусмотрена аварийная емкость V=10м3 с соответствующим оборудованием.

Проектом предусмотрен замкнутый трубопровод рециркуляции паров жидкого моторного топлива по схемам «Резервуар – АЦ», «ТРК – Резервуар», максимально исключающий загазованность АЗС, а также система деаэрации паров топлива и аварийного резервуаров сведенная в вентиляционную группу, расположенную на отдельной площадке. Трубопроводы деаэрации выведены на 4,5м над уровнем площадки, оборудованы дыхательными клапанами с огневым предохранителем и запорной арматурой, которая закрыта в режиме заправки автомобилей и открыта на соответствующей линии во время слива топлива из автоцистерны. Данная система является системой закольцовки паров бензина.

Также предусмотрена система закольцовки паров сжиженного углеводородного газа.

Рельеф местности спокойный ровный. Абсолютные отметки колеблются от 324,11 до 325,17м. Организация рельефа площадки решена методом проектных горизонталей с учетом стока поверхностных вод, расположения внутриплощадочных проездов и типа покрытия.

Технологические трубопроводы прокладываются подземно.

Наружное пожаротушение автозаправочного комплекса в количестве 14,2л/сек предусматривается: передвижной пожарной техникой от четырех пожарных резервуаров общей емкостью 200м3, а также при помощи первичных средств пожаротушения, расположенных у мест заправок. Также проектом предусмотрено устройство системы водяного орошения площадки автоцистерны СУГ.

Хозяйственно-бытовые стоки самотеком отводятся в проектируемый выгреб V=5м3, расположенный на территории АЗС, с последующим вывозом на действующие очистные сооружения района.

Атмосферные осадки с территории АЗС отводятся по подземной сети в резервуар – сборник  V=25м3 с последующей очисткой в локальной очистной установке сточных вод «БЛИК -2К». После очистки поверхностные воды поступают в резервуар – сборник V=10м3, для использования поливов территории.

 4.2 Промышленная безопасность

 4.2.1Санитарно-защитные мероприятия

Безопасная эксплуатация объектов, сооружений и оборудования АЗС обеспечивается выполнением требований межотраслевых правил по охране труда при эксплуатации нефтебаз, складов ГСМ, стационарных и передвижных автозаправочных станций, в строгом соответствии  с «Правилами технической эксплуатации автозаправочных станций (АЗС)» и законодательств по охране труда при эксплуатации предприятий нефтепродуктообеспечения.

Общее руководство работой по охране труда возлагается на руководителя организации. При организации работ по охране труда на АЗС следует учитывать опасные свойства нефтепродуктов: испаряемость, токсичность, способность электризоваться, высокая взрывопожароопасность.

4.2.2 Опасные свойства бензина

Бензин относится к легковоспламеняющимся жидкостям (ЛВЖ) и представляет собой прозрачный летучий нефтепродукт с характерным запахом. Скорость распространения пламени по поверхности зеркала бензина при обычных условиях составляет от 10 до 15 м/с. ПДК – 100мг/м3.

Человек с нормальным обонянием ощущает запах паров бензина при концентрациях их в воздухе около 400 мг/м3. Легкое отравление парами бензина может наступить после 5-10 мин. пребывания человека в атмосфере с концентрацией паров бензина в пределах от 900 до 3612 мг/м3. При отравлении парами бензина появляются головная боль, головокружение, сердцебиение, психическое возбуждение, беспричинная вялость, мышечные судороги, кашель, раздражение слизистых оболочек носа, глаз. Кроме того, первыми признаками острого отравления парами бензина являются понижение температуры тела, замедление пульса и другие симптомы.

При концентрации паров бензина в воздухе свыше 2,2% (30г/м3) после 10-12 вдохов человек теряет сознание; свыше 3% (40г/м3) происходит молниеносное отравление (2-3 вдоха) - быстрая потеря сознания и смерть.

С повышением температуры бензина или окружающей среды сила токсического воздействия бензина резко повышается. При воздействии на кожу бензин может вызвать кожные заболевания – дерматиты и экземы. Бензин не накапливается в организме, но ядовитые вещества, растворенные в нем (тетраэтилсвинец), остаются в организме.

4.2.3 Оказание первой помощи при отравлении парами бензина

 При отравлении парами бензинов пострадавшего необходимо вынести на свежий воздух, освободить от стесняющей одежды, растереть конечности для улучшения циркуляции крови, напоить крепким кофе или чаем. В холодное время года  важно согреть пострадавшего. При попадании бензина через рот следует промыть желудок 1,5-2л воды с 1-ой ст. ложкой питьевой соды, вызвать рвоту. В тяжелых случаях необходимо вызвать врача, до его прибытия обеспечить вдыхание кислорода, паров нашатырного спирта, при необходимости провести искусственное дыхание.

4.2.4 Меры безопасности при работе с дизельным топливом

Меры предосторожности при работе с дизельным топливом такие же, как и при работе с бензином. При загорании топлива следует  применять распыленную воду, пену углекислый газ, перегретый пар. При попадании на кожу дизтопливо следует смывать теплой водой с мылом.

4.2.5 Охрана труда и техника безопасности

Все работники и специалисты, поступающие на АЗС, допускаются к самостоятельной работе после прохождения вводного инструктажа по охране труда, обучения, стажировки на рабочем месте и последующей проверки полученных знаний специальной квалификационной комиссией.

Работники, допущенные к самостоятельной работе, проходят повторный периодический инструктаж по правилам охраны труда и техники безопасности. Повторный инструктаж и обучение для работников АЗС проводится ежеквартально, а для специалистов – не реже одного раза в полугодие. По окончании обучения работники должны сдать экзамены на знание правил техники безопасности, инструкций по эксплуатации оборудования, пожарной безопасности и электробезопасности в рамках выполнения своих служебных обязанностей. Лица, не достигшие 18 лет, и беременные женщины к обслуживанию АЗС по основному производству не допускаются.

В помещении операторной на видном месте должны быть вывешены технологическая схема всех инженерных коммуникаций АЗС и плакаты по безопасному ведению работ. Все работники обеспечиваются инструкциями по охране труда, утвержденными в установленном порядке, а также средствами индивидуальной защиты, спецодеждой, спецобувью согласно установленным перечням и нормам. Весь персонал обучается способам оказания первой помощи пострадавшим при несчастных случаях.

Для выполнения положений, предусмотренных действующими нормативными документами, проектом предлагаются следующие мероприятия по охране труда и технике безопасности:

-  размещение оборудования выполнено в строгом соответствии с действующими нормами  технологического проектирования, с соблюдением нормативных расстояний между оборудованием, зданиями и сооружениями;

-  слив топлива в подземные резервуары герметизирован, с исключением падающей струи, осуществляется через сливные муфты с быстросъемными заглушками в присутствии заправщика и оператора АЗС при наличии заземления АЦ и с выключенным двигателем АЦ;

-  управление колонками осуществляется дистанционно из помещения операторной АЗС;

-  ТРК оборудованы устройствами автоматического отключения при полном баке автомобиля клиента и предохранительными расцепителями;

- для исключения движения огня по трубопроводам все технологические узлы и модули обеспечены огнепреградителями, быстродействующими на закрытие предохранительными клапанами и запорной арматурой;

- электрооборудование, кабельная продукция, пусковая аппаратура  приняты во взрывобезопасном исполнении;

- предусматривается защитное заземление нетоковедущих частей электрооборудования;

- оптимальные планировочные решения, размещение оборудования, конструктивные особенности зданий и сооружений предполагают рациональную организацию рабочих мест;

-  предусмотрена установка на территории АЗС необходимых дорожных, информационных и предупредительных знаков;

-  скорость движения автотранспорта по территории АЗС ограничена до 5 км/час;

-  в проекте предусмотрены системы пожарной и охранной сигнализации;

-  освещение рабочих мест принято расчетное в соответствии с нормативными документами;

-  крышки люков резервуаров и колодцев, сливные муфты, наконечники шлангов выполняются из искробезопасных материалов.

-  предусмотрен непрерывный автоматический контроль за концентрацией паров бензина с подачей светового и звукового сигнала и отключением электрического питания насосов линии выдачи;

-  все показатели работы технологического оборудования выведены в операторную АЗС;

- покрытие всех проездов предусмотрено бензомаслостойким из асфальтобетона, по всему периметру АЗС ограждается бордюрным камнем высотой 150мм;

-  проектом предусмотрены первичные средства пожаротушения в соответствии с ППБ 01-03.

При проведении любых ремонтных работ или мероприятий по техническому обслуживанию оборудования АЗС должна временно прекратить свою работу по заправке автомобилей.

Работы по зачистке емкостей от грязи должны выполняться звеном не менее двух человек с применением противогаза и омедненного инструмента. На все виды работ должны быть разработаны инструкции, а персонал – обучен и проинструктирован с записью в  специальном журнале, иметь соответствующий допуск с указанием в нем ответственного за проведение работ лица.

На территории АЗС не допускается:

-  курить и пользоваться открытым огнем;

-  производить какие-либо работы, не связанные с приемом, хранением, и отпуском топлива;

-  хранить в помещении легковоспламеняющиеся жидкости (ЛВЖ);

-  мыть руки, стирать одежду и протирать полы помещений ЛВЖ;

-  заправлять транспорт, водители которого находятся в нетрезвом состоянии;

-  отпускать топливо в полиэтиленовые канистры и стеклянную тару;

-  производить слив топлива двух и более АЦ одновременно.

4.2.6 Требования охраны труда в аварийных ситуациях

Аварийной ситуацией на АЗС следует считать:

-  загорание АЗС;

-  неисправность в электрооборудовании;

-  утечки нефтепродукта из топливораздаточной колонки, резервуара;

-  загазованность в здании и в рабочей зоне вне помещения (свыше ПДК=100 мг/м3);

-  пролив и перелив при приеме нефтепродуктов.

Во всех аварийных ситуациях следует немедленно отключить общий рубильник,  прекратить заправку автомашин, освободить территорию АЗС от автомобильной техники, оповестить руководство организации, вызвать аварийную бригаду, сделать соответствующие записи в журнале. При возникновении пожара необходимо вызвать пожарную команду, оповестить поставщиков нефтепродуктов, приступить к тушению пожара имеющимися средствами.

При проливе (переливе) нефтепродуктов прекратить все технологические операции, локализовать и удалить пролитый нефтепродукт, место пролива засыпать песком.

4.2.7 Организация и условия труда работников АЗС

Технологический процесс АЗС состоит из следующих основных видов работ:

  1.  Прием и слив ЖМТ через сливную ванну в заглубленные резервуары и прием и слив СУГ из автоцистерны в резервуары для хранения сжиженного углеводородного газа.
  2.  Хранение нефтепродуктов по маркам в заглубленных резервуарах.
  3.  Выдача нефтепродуктов через раздаточные колонки потребителю.
  4.  Мойка легковых автомобилей в проектируемом помещении автомойки с соответствующим оборудованием, системой вентиляции, водоснабжения и канализации.

Все работники обеспечены санитарно-бытовыми помещениями, состав и площади которых определены из требований санитарных норм, технологии производства и с учетом пожеланий заказчика. В проектируемом здании операторной предусмотрены отдельные бытовые помещения для персонала АЗС и персонала автомойки, душевая, санузлы с умывальниками, кладовая для хранения инвентаря и помещение для посетителей.

Отопление, вентиляция, освещение рабочих мест и помещений выполнено в соответствии с нормативными документами.

Водоснабжение – централизованное от проектируемого водовода. Подогрев воды – при помощи электроводоподогревателей, отопление помещений – автономное при помощи электрического котла.

Для выполнения своих функций работники АЗС и автомойки обеспечиваются спецодеждой, спецобувью и средствами индивидуальной защиты в соответствии с действующими нормами и, при необходимости, специальными приспособлении.

На АЗС предусмотрена громкоговорящая связь. Предусмотрена также телефонная связь с основным диспетчерским пунктом, с поставщиками топлива, ближайшей пожарной частью и правоохранительными органами.  Номера телефонов экстренного вызова должны быть указаны на планах локализации и ликвидации аварий и пожаров, вывешены на видном месте в помещении операторной АЗС.

В бытовых помещениях необходимо предусмотреть аптечки с набором необходимых медикаментов для оказания первой помощи пострадавшим.

4.3 Мероприятия по предотвращению пожаров

Все сооружения АЗС запроектированы в соответствии с требованиями СНиП II-89-80*, НПБ 111-98* и ППБ 01-03 с соблюдением противопожарных и санитарных норм проектирования. Площадка расположена на расстоянии 5м от автодороги с твердым покрытием на которой предполагается строительство трубопровода водоснабжения Ду-300мм. Ближайший проектируемый колодец с пожарным гидрантом будет расположен на расстоянии 20 м. от въезда на проектируемую МАЗС. Проектом предлагается строительство четырех подземных емкостей V=50 м3 каждая для обеспечения АЗС запасом воды на случай пожара на период строительства централизованного водоснабжения. Проектом предусмотрено два заезда на территорию МАЗС.

4.3.1 Общие требования пожарной безопасности

К работе на АЗС должны допускаться работники только после прохождения противопожарного инструктажа по предупреждению и тушению возможных пожаров на объекте.

На АЗС приказом по подразделению должно быть назначено лицо, ответственное за пожарную безопасность объекта. На видных местах как в помещениях, так и на территории АЗС должны быть вывешены таблички с номерами телефонов пожарной охраны.

Для персонала АЗС в установленном порядке должны быть разработаны инструкции о мерах пожарной безопасности ведения любых

работ для каждого участка АЗС в соответствии с приложением 1, ППБ 01-03.

На АЗС распорядительным документом должен быть установлен противопожарный режим:

-  определены и оборудованы места для курения;

-  установлен порядок уборки горючих продуктов, хранения промасленной спецодежды;

-  определен порядок обесточивания электрического оборудования по окончании рабочего дня и при пожаре;

-  разработан план локализации и ликвидации пожароопасных ситуаций и пожаров на АЗС.

-  определен перечень и назначение журналов регистрации, учета и сменных журналов.

    Регламентированы:

-  порядок проведения временных огневых  и других пожароопасных работ;

-  порядок осмотра и закрытия помещений после окончания работы;

-  действия работников при обнаружении пожара;

-  определен порядок и сроки прохождения противопожарного инструктажа и занятий по пожарно-техническому минимуму, а также назначены ответственные лица за их проведение;

4.3.2  Здание операторной и мойки автомобилей

Категория здания операторной и мойки легковых автомобилей в соответствии с НПБ 105-03 принята «Д», класс по ПУЭ – невзрыво- и непожароопасный. Степень огнестойкости здания – IV. Строительный объем составляет 1123 м3 < 5000м3, что позволяет не предусматривать внутренний противопожарный водовод согласно нормам и правилам[11] .

Для охраны материальных ценностей и раннего обнаружения возгорания в помещениях операторной и мойки предусмотрена система пожарной сигнализации с выводом сигналов на центральный пульт операторной, установлены звуковые и световые извещатели.

С целью локализации местных очагов пожара в соответствии с НПБ 01-03, приложение 3, таблицы 1, 2 для помещений категории «В» и «Д» и пожара класса А предусмотрены следующие типы огнетушителей:

-  порошковые ОП-5, вместимостью 5л, заряд класса АВС(Е) – 2шт;

-  воздушно-пенные ОВП-10, вместимостью 10л, заряд класса АВС(Е) – 2шт;

-  углекислотные ОУ-5, вместимостью 5л – 2шт.

4.3.3 Технологическая площадка АЗС

Автозаправочная станция отнесена ко второй группе по пожарной опасности. Взрывоопасные установки проектируемой МАЗС и характеристика топлива представлены в таблице 5 и таблице 6 соответственно.

Таблица 5 – Взрывоопасные установки МАЗС

       

       Н а и м е н о в а н и е   у с т а н о в к и

Категория по

НПБ-105-03

  Класс по

ПУЭ-2002

Топливораздаточные колонки (бензин и дизельное топливо)

Ан

В-1г

Резервуары для приема и хранения ЛВЖ подземные (шахты)

Ан

В-1г

Площадка для автоцистерн при сливе топлива, сливная ванна

Ан

В-1г

Дыхательные устройства

Ан

В-1г

Таблица 6 - Характеристика топлива по взрывоопасности

Показатели пожаровзрывоопасности бензина

Аи-80

Аи-92

Аи-95

СУГ

1

Группа горючести

ЛВЖ

ЛВЖ

ЛВЖ

ЛВЖ

2

Концентрационные пределы распространения пламени, % объемные

Нижний - 0,76

Верхний – 5,16

Нижний - 0,76

Верхний– 5,16

Нижний - 0,76

Верхний– 5,16

Нижний - 0,76

Верхний– 5,16

Так же проектом предусмотрены следующие противопожарные мероприятия на АЗС:

-  устройство дорог с твердым покрытием, радиусы их поворота обеспечивают возможность свободной эвакуации людей, транспортных средств, а также заезд пожарной техники;

-  герметичный слив топлива из АЦ в резервуары обеспечивается быстроразъемными муфтами в герметичной ванне, которая обеспечена приямком для сбора и удаления возможных проливов по проектируемому трубопроводу в подземную аварийную емкость V=10м3;

-  применено технологическое оборудование заводского изготовления, исключающее проливы горючих материалов при работе в пределах параметров рабочего режима эксплуатации;

-  предусмотрен контроль герметичности резервуаров в соответствии с рекомендациями НПБ 111-98;

-  на въезде и выезде с территории АЗС предусмотрено устройство повышенных участков (валиков) высотой 200 мм, а сама территория АЗС по периметру ограждается бордюрным камнем h=150 мм. для локализации  возможных проливов при нештатных ситуациях;

-  площадка для АЦ ограждается бортовым камнем h=0,2м, обеспечен сбор утечек с площадки;   

- помещения персонала АЗС отделены от помещений сервисного обслуживания водителей  и   пассажиров противопожарными перегородками;

-  для организации переговорной и распорядительной связи предусмотрена двухсторонняя переговорная связь типа ПГС связь, которая устанавливается в операторной;

-  предусмотрена кнопка аварийного отключения электропитания ТРК и вентиляторов;

-  электрощиты оборудованы автоматическими предохранителями, дверь в щитовую заперта на замок, выполнена из огнестойкого материала;

-  предусмотрена молниезащита оборудования АЗС;

  -  предусмотрены контейнеры с песком для сбора проливов и хранения загрязненного песка;

-  наружные стены здания операторной и мойки выполнены из негорючих материалов;

-  в здании операторной и мойки АЗС имеется так же эвакуационный выход, который выходит  в противоположную от ТРК сторону;

-  воздуховоды приточно-вытяжной вентиляции приняты из несгораемых материалов;

-  для обнаружения возгорания и сообщении о месте его обнаружении (в т. ч. возле сливной ванны и АЦ) в операторной АЗС предусматривается установка прибора приемноконтрольного охранно-пожарного типа «Сигнал-20П»; в сеть пожарной сигнализации включаются дымовые оптико-электронные извещатели ИП 212-45М и пожарные ручные извещатели  ИПР-ЗСУ;

-  все нетоковедущие металлические части злектрооборудования подлежат заземлению.

Проектируемая технологическая площадка АЗС до начала ввода в эксплуатацию водовода пресной воды и проектируемого колодца с пожарным гидрантом обеспечивается противопожарным запасом воды в четырех проектируемых подземных емкостях объемом 50м3 каждая, которые предполагается расположить на площадке АЗС;

-  порошковые ОП-5, вместимостью 5л, заряд класса АВС(Е) – 1шт; (на 4 заправочных островка);

-  воздушно-пенные ОВП-10, вместимостью 10л, заряд класса АВС(Е) – 1шт; (на 4 заправочных островка);

- ОПП-50 порошковый передвижной вместимостью 50л, заряд класса АВС(У) – 2шт. (хранить в помещении операторной, размещать вблизи АЦ при сливе топлива).

Места размещения огнетушителей должны обозначаться соответствующими указательными знаками.

Во всех производственных, административных, складских и вспомогательных помещениях и на наружных установках на видном месте должны быть предусмотрены таблички с указанием:

-  категории помещения по взрывопожарной и пожарной опасности;

-  класса взрывоопасных и пожароопасных зон [12];

-  работника, ответственного за пожарную безопасность;

-  инструкции о мерах пожарной безопасности;

-  номеров телефонов экстренного вызова.

В операторной АЗС должен быть в наличии полный комплект документации и информации по АЗС: лицензия, сертификат, проектная документация, заключение о приеме в эксплуатацию объекта, утвержденное госкомиссией в установленном порядке, ПЛЛ.

4.4  Охрана окружающей среды

4.4.1 Воздействие объекта на атмосферный воздух и характеристика источников выброса загрязняющих веществ в период эксплуатации

Основными источниками выделения загрязняющих веществ являются:

  1.  Резервуарный парк

а) Жидкое моторное топливо

Слив в резервуары осуществляется самотеком при включенном двигателе автоцистерны. Выделение загрезняющих веществ происходит при хранении и сливе топлива. Выделяются следующие загрязняющие вещества: пентилены (амилены – смесь изомеров), бензол, ксилол, смесь предельных углеводородов С1-С5 и С6-С10, толуол, этилбензол, сероводород, углеводороды предельные С12-С19. При заполнении резервуаров отпуск топлива на ТРК не производится. Одновременно заполняется только один резервуар. Источник выбросов организованный – с помощью дыхательного клапана резервуара;

б) Газообразное моторное топливо (СУГ)

Выделение загрязняющих веществ происходит при хранении и закачке топлива. Выделяются следующие загрязняющие вещества: смесь предельных углеводородов С1-С5, метилмеркаптан. При заполнении резервуаров отпуск топлива на ТРК не производится. Одновременно заполняется только один резервуар. Источник выбросов организованный – сбросная свеча резервуара.

  1.  Топливо - раздаточные колонки

а) Жидкое моторное топливо

Выделение загрязняющих веществ при наливе топлива в баки автомобилей. Выделяются следующие загрязняющие вещества: пентилены(амилены – смесь изомеров), бензол, ксилол, смесь углеводородов предельных С1-С5, С6-С10 и С12-С19, толуол, этилбензол, сероводород. Источник выбросов неорганизованный – бак автомобиля;

б) Газообразное моторное топливо (СУГ)

Выделение загрязняющих веществ происходит при закачке топлива в баллоны автомобилей (отсоединение струбцины, выброс из шланга). Выделяются следующие загрязняющие вещества: смесь углеводородов предельных С1-С5, метилмеркаптаны (одорант). Источник выбросов неорганизованный – балон автомобиля.

  1.  Площадка автоцистерны ЖМТ

Доставка нефтепродуктов АЗС осуществляется бензовозами, один раз в два дня. Выделение загрязняющих веществ происходит в результате сгорания дизельного топлива при работе двигателя автоцистеры. Выделяются следующие загрязняющие вещества: оксид азота (III), диоксид азота, диоксид серы (ангедрид сернистый), керосин, углерод черный (сажа), оксид углерода. Выброс загрязняющих веществ площадной.

  1.  Площадка автоцистерн газообразного топлива

Доставка СУГ на АЗС осуществляется автоцистерной, один раз в два дня. Выделение загрязняющих веществ происходит в результате сгорания дизельного топлива при работе двигателя автоцистеры (закачка азота происходит через герметичную систему). Выделяются следующие загрязняющие вещества: оксид азота (III), диоксид азота, диоксид серы (ангедрид сернистый), керосин, углерод черный (сажа), оксид углерода. Выброс загрязняющих веществ площадной.

  1.  Стоянка легкового и грузового автотранспорта

Выделение загрязняющих веществ происходит при работе двигателя автомобилей. В атмосферу выбрасываются: бензин, диоксид азота, керосин, оксид углерода, деоксид серы, сажа.

  1.  Резервуар сбора ливневых вод

В атмосферу выбрасывается смесь углеводородов предельных С1-С5, содержащихся в сточных водах. Источник выброса организованный – дыхательный клапан резервуара.

Значения предельно-допустимой концентрации (ПДК) в атмосферном воздухе населенных пунктов и класс опасности вредных веществ в период эксплуатации представлены в таблице 7.

Таблица 7– Концентрации и класс опасности вредных веществ

Вещество

Используемый критерий

Значение критерия, мг/ м3

Класс опасности

Суммарный выброс вещества

Диоксид азота

ПДКмр

0,2000000

3

0,017319

Оксид азота

ПДКмр

0,4000000

3

0,002814

Углерод

ПДКмр

0,1500000

3

0,001541

Диоксид серы

ПДКмр

0,5000000

3

0,001769

Сероводород

ПДКмр

0,0080000

2

0,000291

Оксид углерода

ПДКмр

5,0000000

4

0,096873

Пентилены (амилены, смесь изомеров)

ПДКмр

1,5000000

4

0,047023

Бензол

ПДКмр

0,3000000

2

0,042275

Продолжение таблицы 7

Метилбензол

ПДКмр

0,6000000

3

0,038450

Этилбензол

ПДКмр

0,0200000

3

0,001096

Ментатиол

ПДКмр

0,0010000

4

0,000001

Бензин (нефтяной малосернистый)

ПДКмр

5,0000000

4

0,001404

Алканы С12-С19, углеводороды предельные С12-С19

ПДКмр

1,0000000

4

0,,103679

Смесь углеводородов предельных С1-С5

ОБУВ

50,000000

1,420543

Смесь углеводородов предельных С6-С10

ОБУВ

30,000000

0,732046

Керосин

ОБУВ

1,2000000

0,010749

Всего веществ

2,512867

в том числе твердых

0,001541

жидких/газообразных

0,119066

По данным приведенным в таблице 6 можно сделать следующие выводы. Фоновые показатели загрязнения атмосферного воздуха не препятствуют эксплуатации АЗС. В период эксплуатации в атмосферу  ожидается выброс 2,5128671 т/год загрязняющих веществ 18 наименований от 2 до 4 класса опасности.

4.4.2  Складирование (утилизация) отходов

Условия сбора и хранения отходов являются важным фактором степени воздействия отходов на окружающую природную среду. Степень отходов на окружающую среду напрямую связана со степенью соблюдений требований нормативных документов в области сбора и хранения отходов.

Предельный объем временного накопления отходов на предприятии определяется требованиями экологической безопасности, наличием свободных площадей для их временного хранения с соблюдением условий безпрепядственного подъезда транспорта для их погрузки и вывоза на объекты размещения, периодичностью вывоза отходов.

При временном хранении отходов в нестационарных складах, на открытых площадках без тары (навалом и насыпью) или в негерметичной таре должны соблюдаться следующие условия:

  1.  Поверхность хранящихся насыпью отходов должна быть защищена от воздействия атмосферных осадков и ветров (укрытие брезентом);
  2.  Поверхность площадки должна иметь искусственную водонепроницаемое и химически стойкое покрытие (асфальт, керамзитобетон и.т.д.);
  3.  По периметру площадки должна быть предусмотрена обваловка и обособленная сеть ливнестоков.

Периодичность вывоза отходов определяется классом опасности, физико-химическими свойствами отходов, емкостью контейнеров для временного хранения и нормами предельного накопления отходов, техникой безопасности, взрыво-пожаробезопасностью отходов и грузоподъемностью транспортных средств осуществляющих вывоз отходов.

На предприятии организованы централизованные места для сбора и временного хранения отходов. По мере накопления отходы передаются для размещения на специализированных объектах общегородского назначения.

К качественная характеристикам отходов относятся:

-класс опасности для окружающей природной среды;

-опасные свойства отходов, которые обусловлены содержанием химических веществ, соединений и агрегатное состояние отходов.

Классификация (перечень), класс опасности и коды отходов приняты согласно федеральному классификационному каталогу отходов.

4.4.3 Условия хранения отходов на площадке

Смешение отходов на всех стадиях сбора, хранения, транспортирования недопустимо. Сбор хозяйственно-бытовых отходов в здании, операторной осуществляется в многоразовые емкости или одноразовые пакеты, которые затем накапливаются в стандартном металлическом крытом контейнере емкостью 0,75м3.

Смет с территории – в таком же контейнере, количество контейнеров – 2 шт.

Местом хранения контейнеров является специальное асфальтированная площадка с отбортовкой. Выгрузка отходов из контейнеров осуществляется транспортом специализированного предприятия.

Накопление песка загрязненного бензином осуществляется в ящики 0,7 м3 с крышкой, расположенном на территории.

Вывоз отходов осуществляется по мере накопления. Договора на вывоз отходов заключаются после сдачи объекта в эксплуатацию.

  1.   Мероприятия направленные на минимизацию воздействия отходов на окружающую природную среду

Для выполнения экологических требований по обеспечению охраны природных сред (растительности, почв, подземных вод и недр) от загрязнения отходами СМР организуется система обращения с производственными и бытовыми отxодaми. Система предусматривает:

- использование отходов инертных строительных материалов, образующихся в период СМР, в последующих технологических операциях строительства объекта, что обеспечивает захоронение наименьшего количества отходов и сохранение природных ресурсов;

- осуществление регулярного вызова отходов к местам размещения и переработки в период строительства объекта для исключения несанкционированного размещения отходов и захламления территорий;

- организацию раздельного сбора образующих отходов по их видам и классам с тем, чтобы обеспечить их последующее размещение на предприятии по переработке, а так же по вывозу на полигон для захоронения;

- соблюдение периодичности вывоза отходов и захламления территорий;

- организацию раздельного сбора образующихся отходов по их видам и классам с тем, чтобы обеспечить их последующее размещение на предприятии по переработке, а также по вывозу на полигон для захоронения;

- соблюдение периодичности вывоза отходов с участка проведения работ, а также соблюдение условий передачи их на другие объекты для переработки и захоронения;               

- соблюдение условий временного хранения отходов на участке проведения работ в соответствии с требованиями природоохранного законодательства;

-  соблюдение санитарно-экологических требований к транспортировке отходов;

- заключение договоров на передачу отходов специализированным организациям перед началом реконструкции.

- отходы, образующиеся в период эксплуатации, передаются организациям-приемщикам данного вида отхода.

- передача опасных отходов специализированным организациям, имеющим соответствующие лицензии на обращение с отходами;

       4.5 Защита сооружений от прямых ударов молний

На АЗС проектом предусматривается молниезащита II категории, исходя из того, что АЗС имеет категорию пожароопасности В-1Г. Защите от прямых ударов молнии подлежат дыхательные клапана резервуаров для топлива и пространство над ними, ограниченного цилиндром высотой 2,5м и радиусом 5м. Поскольку дыхательные клапана расположены друг от друга достаточно далеко, то для обеспечения их молниезащиты нужно применить три молниеотвода высотой 13, 21 и 24м в зависимости от территории их действиях.

Зона защиты двойного стержневого молниеотвода высотой h150 м представлена на рисунке 15.

Рисунок 15 -Зона защиты двойного стержневого молниеотвода

1 — граница зоны защиты на уровне hx1; 2 -то же на уровне hx2, 3 -то же на уровне земли

Торцевые области зоны защиты молниеотводов М1 =21м и М2=24м определяются по формулам

,

,

где  r01=31,5м, r01=36м;

rx1=13,57м, rx2=21,33м;

h01=19,32м, h01=22,1м.

Торцевые области зоны защиты молниеотводов М1 =21м и М3=13м

,

,

где  r01=31,5м, r03=19,5м;

rx1=13,57м, rx3=8,1м;

h01=19,32м, h03=11,96м.

 Кроме того, согласно ПУЭ, зона в радиусе 3 метров от ТРК относится к классу взрывоопасности В-1Г. В зоне ТРК в качестве молниеприемника используется металлическая кровля навеса.

Также данным разделом предусмотрена молниезащита здания АЗС. Так как в конструкции здания АЗС предусмотрены стальные фермы, то установка молниеприемной сетки не требуется.

Для защиты от вторичных проявлений молнии, статического электричества и заноса высоких потенциалов по подземным коммуникациям предусматривается присоединение к наружному заземляющему устройству резервуаров, технологических трубопроводов, корпусов технологического оборудования.

Искусственный заземлитель электрооборудования ТРК выполняется в виде контурного заземлителя с двумя уравнительными полосами. Вертикальные заземлители из круглой стали Ф16 мм, длиной 3м забиваются в грунт на глубину 3,5м. К ним привариваются горизонтальные заземлители из стальной полосы 40х4мм.

Защита резервуаров с топливом выполняется замкнутым контуром из стали полосовой 40х4мм, соединенных со сталью круглой Ø16мм длиной 3м, забиваемой на глубину 3,5м.  

ЗАКЛЮЧЕНИЕ

Рынок автозаправочных станции растет с каждым днем, порождая между собой жесткую конкуренцию. Последние тенденции на рынке Автозаправочных станции показали, что строительство мелких АЗС с двумя-тремя топливо -заправочными колонками стало далеко не выгодно. В настоящее время широкое развитие получило строительство крупных автозаправочных комплексов с участками для заправки автомобилей жидким моторным топливом разных видов и сжиженным углеводородным газом, магазинами и мойками на территории АЗС. Кроме того с каждым днем все больше внимания уделяется модернизации информационно-технологической инфраструктуры предприятий автозаправочных комплексов.

На МАЗС М-5 Урал применено следующее оборудование, обеспечивающее надежную и бесперебойную работу комплекса:

-    введена в эксплуатацию система автоматизации работы АЗС;

-  вместо привычных стальных трубопроводов используются полиэтиленовые трубы высокого качества;

-  для приема и хранения топлива применяются двустенные резервуары для обеспечения их коррозионной стойкости и герметичности. Кроме того резервуары снабжаются всем необходимым оборудованием (система переполнения резервуара, линия газовозврата и  огнепреградители, уровнемеры и.т.д.);

-  насосные агрегаты для перекачки топлива, исключающие образование воздушных пробок в системе, а значит обеспечивающие бесшумную работу АЗС.

-  устройство слива топлива из автоцистерны выполнено в виде законченного модуля, оснащенного линией рециркуляции паров с обратным клапаном и приямок для сбора утечек топлива;

- модернизированные топливораздаточные колонки с блокирующими муфтами на шланге топливораздаточных пистолетов и топливораздаточными пистолетами, оборудованными системой автоматического отключения подачи продукта при заполнении бака клиента.

Так же особое внимание при проектных и монтажных работах на АЗС уделяется охране труда и безопасности проекта.

На участке автозаправочной станции приняты все необходимые меры по обеспечению пожарной безопасности:

-   установлены молниеотводы  вблизи резервуаров для хранения топлива, навес над ТРК и крыша операторной выполнены из металла вследствии исключения прямых ударов молнии;

-  на территории установлены резервуары с водой;

-   на всех пожароопасных участках установлены огнетушители.

Экологическая безопасность обеспечена.

По приведенным расчетам выявилось, что следствием осуществления намечаемой деятельности по строительству и эксплуатации МАЗС в области обращения с отходами является образование 109,31т отходов в период строительства и образование 76,11 т/год в период эксплуатации.

Фоновые показатели загрязнения воздуха не препятствуют эксплуатации АЗС. Даже при самых неблагоприятных условиях максимальные приземные концентрации загрязняющих веществ, создаваемые выбросами объекта при строительстве, удовлетворяют санитарно-гигиеническим нормам.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

  1.  Типовые расчеты при сооружении и ремонте газонефтепроводов/ Л.И. Быков – Санкт-Петербург: Недра, 2006. – 824 с.
  2.  Бондарь, В.А. Операции с нефтепродуктами. Автозаправочные станции / Е.И.  Зоря,  Д.В. Цагарелли  - М. : ООО "Паритет Граф", 2000. - 407с
  3.  Гольянов, А.И. Газовые сети и газохранилища/ А. И. Гольянов – Уфа: ООО Издательство научно-технической литературы «Монография», 2004.
  4.  Грознов, Г.А. Строительство нефтебаз и автозаправочных станций/ Г.А. Грознов - М: «Недра», 1980.-303с.
  5.  Едигаров, С.Г. Проектирование и эксплуатация нефтебаз и газохранилищ/ С.Г. Едигаров,  С.А Бобровский -М., «Недра», 1973.-180 с.

6.  Лурье, М.В. Трубопроводный транспорт нефтепродуктов/ М.В. Лурье, С.П. Макаров- М.: «Недра», 1999.- 267 с.

7.  Типовые расчеты по проектированию и эксплуатации нефтебаз и нефтепроводов: Учебное пособие для ВУЗов / Тугунов П.И. [и др.].  – Уфа: ООО « Дизайн – Полиграф Сервис», 2002. – 658с.

8.  ТЭД 40-52-05 для автомобильных газозаправочных станций, многотопливных автозаправочных станций, пунктов наполнения бытовых баллонов.- Нижний Новгород, 2005г.

9.  РД 34.21.122-87, «Инструкция по устройству молниезащиты зданий и сооружений», Государственный научно-исследовательский энергетический институт им. Г.М. Кржижановского, 1987. 

10. НПБ 111-98* - Автозаправочные станции. Требования пожарной безопасности;

11. ППБ 01-03 – Требования пожарной безопасности в Российской Федерации;

12.   ПУЭ-2002 – Правила устройства электроустановок;

13. СН 550-82 Инструкция по проектированию технологических трубопроводов из пластмассовых труб

14.  СНБ 3.02.01 Склады нефти и нефтепродуктов

15. СНиП 3.05.05.84 – Технологическое оборудование и технологические трубопроводы;


 

А также другие работы, которые могут Вас заинтересовать

73057. Проблема свободы и ответственности в морали 29.5 KB
  Проблема соотношения свободы и необходимости рассматривается с двух противоположных точек зрения – фатализма и волюнтаризма. Такое понимание свободы приводит к полному отказу от нравственных норм и утверждению произвола.
73058. Система этических категорий 28 KB
  Категории этики –- это основные понятия этической науки отражающие наиболее существенные элементы морали. Понятия этики отражающие наиболее существенные стороны и элементы морали и составляющие теоретический аппарат этической науки.
73059. В.С Соловьев (1853 - 1900) 35.5 KB
  Центральная идея его философии идея всеединства. В аксиологии всеединства центральное место занимает абсолютная ценность Истины Добра и Красоты соответствующих трём Ипостасям Божественной Троицы. Основой всеединства у Соловьева выступает божественная троица в ее связи со всеми божественными творениями...
73060. Понятие: общая характеристика, объём и содержание, виды понятий, отношения между понятиями 42 KB
  Понятие - форма мысли, отражающая предметы в их общих, существенных и отличительных признаках. Понятие может отражать явление, процесс, предмет (как материальный, вещественный, так и идеальный, мнимый, воображаемый). Главное — отражать общее и в то же время существенное, отличительное, специфическое в этом предмете.
73061. Определение понятий, виды определений и правила 24.5 KB
  Определение понятий виды определений и правила. Определение понятия логическая операция раскрывающая содержание понятия т. Как логическая операция определение состоит из двух элементов: определяемого понятия понятия содержание которых требуется раскрыть...
73062. Виды умозаключений: дедукция, индукция, аналогия 23 KB
  Умозаключение –- форма мышления посредством которой из одного или нескольких суждений выводится новое суждение; это такая мыслительная структура в которой из двух или более истинных исходных суждений называемых посылками на основании определенной логической связи между ними формируется новое истинное суждение.
73063. Системный и синергетический подходы к культуре: М.Каган, Э.Маркарян, Л.Уайт 35 KB
  Различая три основные формы бытия — бытие природы, бытие общества и бытие человека, он полагает, что культура в самом общем, философском плане представляет собою четвертую форму бытия, которая порождена деятельностью человека.