9615

Дослідження підсилювача постійного струму на біполярному транзисторі

Лабораторная работа

Физика

Тема: Дослідження підсилювача постійного струму на біполярному транзисторі Мета: Отримати вхідну та вихідну вольт-амперну характеристику (ВАХ) біполярного транзистора, обраховувати коефіцієнт підсилення потужності Обладнання: Стенд з двома рег...

Украинкский

2013-03-14

56 KB

3 чел.

Тема: Дослідження підсилювача постійного струму на біполярному транзисторі

Мета: Отримати  вхідну та вихідну вольт-амперну характеристику (ВАХ)

біполярного транзистора, обраховувати коефіцієнт підсилення потужності

Обладнання: Стенд з двома регульованими напругами, вольтметрами та амперметрами, опори, NPN-транзистор, блок живлення постійного струму.

Для розрахунку параметрів схем для різних включень транзистору – спільний

емітер, спільний колектор, спільна база, використовуються сукупності ВАХ

вхідних та вихідних характеристик:  

сукупність залежностей струму бази - Ib від напруги база-емiтер Ube для різних значень напруги колектор-емiтер Uce,

сукупність залежностей струму колектора – Ic від напруги колектор-емiтер Uce для різних значень струму бази - Ib.

План роботи

1. Ознайомитися зі схемою стенду.  Ототожнити вимірювальні прилади на схемі та стенді.

2. Установити ручки керування напругами бази Ube і колектора Uce у крайнє положення проти годинникової стрілки, що відповідає нульовій напрузі.

3. Пiд’єднати блок живлення.

4. Виміряти сукупність залежностей напруги і струмів транзистору для фіксованого

значення напруги колектор-емітер. Результати вимірів занести до таблиці 1.

4.1. Правою ручкою виставити потрібне значення напруги колектор-емітер Uce згідно особистого завдання. Під час вимірів контролювати постійність цієї напруги. Значення Uce занести до таблиці 1.

4.2. Лівою ручкою змінювати напругу база-емітер Ube і для струмів бази Ib наведених у таблиці виміряти значення напруг Ube та струмів колектору Ic і емітеру Ie.

Таблиця 1

Ib,A

0

10

20

40

60

80

100

120

140

Ube, V

Ic, mA

Ie, mA

Uce =          V

5. Виміряти сукупність залежностей струму  колектору Ic від напруги колектор-емiтер Uce 

для ряду фіксованих значень струму бази Ib. Результати вимірів занести до таблиці 2.

5.1. Лівою ручкою виставити потрібне значення струму бази Ib . Під час вимірів контролювати постійність цього струму.
5.2. Правою ручкою змінювати напругу колектор-емітер
Uce і  виміряти значення струму колектору Ic. Результати вимірів струму Ic занести до таблиці “Струм Ic

Таблиця  “Струм Ic

Ib,A

Uce, V

0

20

40

60

80

100

120

0

1

4

8

12

6. За даними таблиці 1 побудувати графіки залежностей напруг і струмів для фіксованого

значення напруги колектор-емітер Uce.

6.1. Напруги база-емітер Ube від струму бази Ib

6.2. Струму колектору Ic від струму бази Ib

Залежності струму і напруг від струму бази

для фіксованого значення напруги колектор-емітер
7. За даними таблиці
Струм Ic побудувати родину графіків залежностей  струму колектору

Ic від напруги колектор-емітер Uce для ряду фіксованих значень струмів бази Ib

 

Залежності струму колектору від напруги колектор-емітер

для фіксованих значень струму бази

8. Обчислити статичний коефіцієнт підсилення струму колектору відносно струму бази s=Ic/Ib для максимальних виміряних значень струму.

s=

9. Обчислити максимальне значення динамічного коефіцієнту підсилення струму колектору відносно струму бази d=Ic/Ib.

d=

10. Обчислити статичний коефіцієнт підсилення KP = Pce/ Pbe потужності кола колектор-емітер Pce = Ib Vbe відносно потужності кола база-емітер Pbe = Ib Vbe для максимальних струмів і максимальної напруги колектор-емітер.

KP =


 

А также другие работы, которые могут Вас заинтересовать

80169. Максимальная проектная авария – разрыв трубопровода первого контура большого диаметра 131 KB
  В результате выброса горячего теплоносителя давление и активность под оболочкой резко возрастают. С момента разрыва по сигналу аварии происходит запуск механизмов систем обеспечения безопасности. В случае обесточивания секций надежного питания
80170. Аварийные режимы, обусловленные неисправностями предохранительных клапанов компенсатора давления 112 KB
  6 Когда давление в первом контуре уменьшится менее 160 кгс см2 при условии открытого положения УР21S09 закроется УР21S08 что приведет к закрытию главного клапана УР21S01 НУ12 для бл. Когда давление в первом контуре уменьшится до 155 кгс см2 примерно через 35 сек. 7 Давление в УР20W01 увеличивается но не достигнет точки разрыва мембраны 62 кгс см2. 10 Возможно срабатывание АЗ РУ вследствие снижения давления над активной зоной ниже 148 кгс см2.
80171. Тяжелые аварии на АЭС 469 KB
  Тяжелые аварии на АЭС План лекции 1. Ошибки в действиях оперативного персонала при аварии на АЭС ТриМайлАйленд и ЧАЭС. До Чернобыльской аварии случившейся через семь лет авария на АЭС ТриМайлАйленд считалась крупнейшей в истории мировой ядерной энергетики и до сих пор считается самой тяжёлой ядерной аварией в США в ходе неё была серьёзно повреждена активная зона реактора часть ядерного...
80172. Снятие АЭС с эксплуатации 576 KB
  Основные термины и определения Термин Определение Прекращение эксплуатации Заключительный этап эксплуатации энергоблока который реализуется после принятия решения о снятии его с эксплуатации а также в течение которого он приводится к состоянию когда ядерное топливо отсутствует на его территории или находясь в пределах этой территории размещено только в хранилищах отработавшего ядерного топлива предназначенных для долгосрочного безопасного хранения Окончательное закрытие Этап снятия энергоблока с эксплуатации в течение...
80174. Эксплуатация АЭС 148.5 KB
  Вводная лекция по дисциплине Эксплуатация АЭС. Цель и задачи дисциплины Эксплуатация АЭС. Характеристика системы эксплуатации АЭС. Изучить и законспектировать основные термины и определения эксплуатации АЭС.
80175. Перевод энергоблока в состояние «Холодный останов» после перегрузки топлива 116 KB
  Окончание перегрузки топлива означает что полностью выполнены Программа и рабочий график перемещения ТВС Программа проведения контроля герметичности оболочек ТВЭЛ ТВС и другие программы работ запланированные на период разупотнения первого контура. Исходное состояние технологических систем перед подготовкой к пуску следующее: в работе один из активных каналов САОЗ низкого давления системы планового и аварийного расхолаживания и не менее чем еще один канал работоспособный; в работе два канала системы технической воды...
80176. Перевод энергоблока из состояния «Холодный останов» в состояние «Горячий останов» 189 KB
  Состояние систем и оборудования ЭБ при подготовке к разогреву 1го контура. Разогрев первого контура до температуры гидроиспытаний. Здесь были рассмотрены процессы дозаполнения первого контура подъем давления в первом контуре до 5 и 35 кгс см2 а также создание азотной подушки в компенсаторе давления. Перевод ЭБ в состояние горячий останов является важной технологической операцией так как при этом происходит включение ГЦН и разогрев первого контура до номинальных параметров.
80177. Перевод энергоблока из состояния «Горячий останов» в состояние «Реактор критичен» 157.5 KB
  Вывод реактора в критическое состояние и на минимально контролируемый уровень мощности. В результате изучения материала лекции студенты должны: а знать: состояние систем и оборудования ЭБ перед началом вывода РУ на МКУ; действия оператора при выводе реактора в критическое состояние; б уметь выполнять операции водообмена и подъема ОР СУЗ; в быть ознакомленными с физическими основами процессов протекающих на ЭБ при его переводе в состояние Реактор критичен. Перевод ЭБ в состояние реактор критичен является важной технологической...