96252

Силовые электронные устройства. Инверторы и преобразователи частоты

Реферат

Коммуникация, связь, радиоэлектроника и цифровые приборы

Электронные ключи. Электронным ключом называется устройство для замыкания и размыкания силовой электрической цепи, содержащее по крайней мере один управляемый вентильный прибор. Вентильный прибор (вентиль) — электронный прибор, проводящий ток в одном направлении.

Русский

2015-10-04

322 KB

4 чел.

Омский государственный технический университет

РЕФЕРАТ

на тему: «Силовые электронные устройства. Инверторы и преобразователи частоты»

Выполнил: студент гр. ЗА-410

Классен М. А.

_____________________________

Проверил: 

_____________________________

Омск – 2013

Силовые электронные ключи

Электронные ключи. Электронным ключом называется устройство для замыкания и размыкания силовой электрической цепи, содержащее по крайней мере один управляемый вентильный прибор. Вентильный прибор (вентиль) — электронный прибор, проводящий ток в одном направлении. На основе двух или более вентильных приборов создаются двунаправленные ключи, проводящие ток в двух направлениях. Понятие «силовой» означает, что осуществляется управление потоком электрической энергии, а не потоком информации. К «силовым» приборам формально принято относить приборы с максимально допустимым значением среднего тока свыше 10 А или импульсным током свыше 1000 А. Функции силовых электронных ключей в настоящее время выполняют силовые полупроводниковые приборы, физической основой которых являются полупроводниковые структуры с различными типами электронной проводимости.

Силовые полупроводниковые приборы можно классифицировать по различным признакам: принципу действия, конструктивному исполнению, электрическим параметрам, применению и др. Поскольку полупроводниковые приборы являются нелинейными элементами, то их существенными характеристиками являются вольт-амперные характеристики (ВАХ), связывающие значения токов и напряжений на приборе в различных режимах его работы.

Статические режимы работы ключей. Статическим режимом работы ключа называется установившийся после переключения режим его работы в одном из следующих состояний: включенном (проводящем) или выключенном (непроводящем). Основной характеристикой ключа в этом режиме является статическая ВАХ. В отличие от идеального ключа (рис. 6.1) ВАХ реального ключа в проводящем состоянии имеет прямое падение напряжения DuS, а в непроводящем — пропускает остаточный ток iS0 (прямой или обратный). На рис. 6.2, а приведена статическая ВАХ ключа с односторонней проводимостью прямого тока (например, полупроводникового диода). В общем случае она описывается аналитическими уравнениями. Для упрощения анализа цепей, содержащих электронные ключи, ВАХ последних аппроксимируются более простыми математическими функциями (рис. 6.2, б), позволяющими посредством несложных математических преобразований произвести предварительную оценку установившихся электрических параметров цепи, содержащей такие элементы.

 

На аппроксимированной ВАХ (рис. 6.2, б) начальный участок при прямом напряжении представлен отрезком DuS, а углы aпр и bпр соответствуют наклону аппроксимированных ВАХ в прямом и обратном направлениях.

Динамические режимы работы ключей. Динамическим режимом работы ключа называется его работа в процессе перехода из одного состояния (например, включенного) в другое (например, выключенное) и наоборот. Применительно к ключам, работающим в электрических цепях, такие процессы называют также коммутационными, так как они соответствуют включению (отключению) цепи в электрической схеме или переводу тока из одной ветви электрической схемы в другую.

Одной из основных характеристик работы ключа в динамическом режиме является динамическая ВАХ, которая представляет зависимость напряжения на ключе uS от протекающего через него тока в переходном процессе. Динамические ВАХ называют также траекториями переключения (коммутации) электронного ключа. Переходные процессы в ключах зависят от быстродействия и параметров элементов электрической цепи.

Статические и динамические ВАХ ключевых приборов позволяют не только оценивать потери в них активной мощности, но и определять область их безопасной работы.

Инвертор. Принцип работы, разновидность, область применения

Последовательный инвертор

Электрическая схема, рабочие фазы и формы выходных сигналов последовательного инвертора изображены на рис. 1. Такая схема называется последовательным инвертором, поскольку в ней нагрузочное сопротивление включено последовательно с емкостью. R - нагрузочное сопротивление, L и С - коммутационные элементы. Такой тип инвертора содержит два тиристора. Рассмотрим подробнее фазы работы такой схемы.

Фаза I. Тиристор Т1 включается в момент времени to. Начинается заряд конденсатора от источника питания. Последовательная цепь R, L и С формирует синусоидальный ток через нагрузочное сопротивление и выполняет функцию демпфирующей цепи. Когда ток в цепи уменьшается до нуля, тиристор Т1 запирается. Напряжение на нагрузочном сопротивлении находится в фазе с током тиристора. Формы напряжений VL и Vc можно получить с помощью теоремы Кирхгофа: (VL+ Vc = E), величины VL и Vc должны удовлетворять условиям этого уравнения.

Фаза II. Тиристор Т2 не должен включаться сразу после того, как ток через тиристор Г, уменьшится до нуля. Для лучшего запирания тиристора Т1, к нему необходимо приложить небольшое обратное напряжение. Если тиристор Т2 включается без запаздывания, или мертвая зона отсутствует, напряжение источника питания замыкается через открытые тиристоры Т1 и Тг.. Если оба тиристора находятся в закрытом состоянии, то VR = 0, VL= 0, следовательно, L di/dt = 0 и конденсатор С остается незаряженным.

Фаза III. В момент времени t2 тиристор Т2 включается и инициирует отрицательный полупериод. Конденсатор разряжается через L, R и Т2. Следует заметить, что электрический ток через нагрузочное сопротивление R протекает в противоположном направлении. В момент времени, когда этот ток уменьшается до нуля, тиристор Т2 выключается. Формы напряжений VL и Vc можно получить с помощью теоремы Кирхгофа: (VL + Vc = 0), величины VL и Vc должны удовлетворять условиям этого уравнения.
Рис.1 - Последовательный инвертор:

а) Электрическая схема;

б) Фазы работы схемы;

в) Формы напряжений и токов в цепях последовательного
инвертора

Если тиристор Т1 запустить с задержкой на величину мертвого времени, вышеупомянутые процессы повторятся.

Преимущества:

1. Простая конструкция.

2. Выходное напряжение близко к синусоидальному.

Недостатки:

1. Индуктивность L и конденсатор С имеют большие габариты.

2. Источник питания используется только в течение положительного полупериода.

3. В выходном напряжении имеются высшие гармоники из-за наличия мертвой зоны.

Последовательный инвертор лучше всего подходит для высокочастотных устройств, так как для требуемых значений 1 и С уменьшаются их габариты. Время периода для одного цикла составляет:

T0=T + 2td. где Г = l/ft и t6 - мертвое время.

Выходная частота последовательного инвертора всегда меньше резонансной частоты вследствие наличия мертвой зоны. Значение выходной частоты может варьироваться путем изменения мертвого времени.

Рис.1г. -Форма выходного напряжения последователного инвертора

Параллельный инвертор

Базовая схема параллельного инвертора изображена на рис.2а. Когда ключ 1 замкнут, помеченные точкой выводы обмоток A, D и С имеют положительный потенциал. Выходное напряжение - положительное. Во второй половине периода ключ 1 размыкается и замыкается ключ 2. Помеченные точкой выводы обмоток A, D и С имеют отрицательный потенциал и выходное напряжение - отрицательное.

Электрическая схема, рабочие фазы и формы выходных сигналов параллельного инвертора изображены на рис.2. Параллельные инверторы применяются в низкочастотных устройствах. В них используются трансформатор с отводом из центра первичной обмотки, два тиристора и коммутирующий конденсатор. Источник питания включается между центральным выводом и общей точкой катодов тиристоров. Эквивалентное нагрузочное сопротивление, пересчитанное в цепь первичной обмотки, подключено параллельно коммутационному конденсатору. Следовательно, инвертор такого типа является параллельным.

В момент времени t= tx тиристор Т1 включается. Напряжение источника питания Е приложено к обмотке трансформатора А. Согласно закону самоиндукции такое же напряжение Е индуцируется на обмотке трансформатора В, но противоположной полярности. Поскольку обмотки А и В соединены последовательно, на них будет суммарное напряжение 2Е. Этим напряжением конденсатор предварительно заряжается до напряжения +2Е.

В момент времени t= t2 тиристор Т2 включается. Полярность напряжений на обмотках А и В меняется на обратную, к конденсатору, и тем самым к тиристору Т1, прикладывается обратное напряжение, за счет чего тиристор Т1 выключается. Полярность напряжения на конденсаторе меняется, и он перезаряжается до напряжения - 2Е. Также меняет на обратное направление ток во вторичной обмотке, то есть через нагрузочное сопротивление протекает переменный ток прямоугольной формы. Форма выходного напряжения аналогична форме напряжения на конденсаторе.

Рис.2 - а) Базовая схема параллельного инвертора;

б) Фазы работы схемы;

в) Формы напряжений и токов в цепях параллельного инвертора

Недостатки

  1.  Номинальное напряжение конденсатора должно быть 2Е.
  2.  Ток источника питания не является чистым постоянным током.
  3.  Колебания тока источника питания, являются причиной дополнительного выделения тепла в первичной цепи параллельного инвертора.


Мостовые инверторы. Однофазный полумостовой инвертор

Однофазный полумостовой инвертор состоит из двух источников питания и двух коммутаторов. Нагрузка подключена между общим выводом источников питания и общей точкой коммутаторов.

Полумостовой инвертор с RLC – нагрузкой

Рис.5 - а) Схема полумостового инвертора с RLC-нагрузкой, б) Форма напряжения и тока полумостового инвертора

Электрическая схема и форма выходного сигнала однофазного полумостового инвертора с RLС-нагрузкой изображены на рис.5. Если инвертор питает RLС-нагрузку, отдельная цепь коммутирования не требуется. Это можно объяснить с помощью символического изображения на рис.5б. Рабочая частота инвертора должна быть выбрана такой, чтобы Хс > XL. При этих условиях в этой схеме ток опережает по фазе напряжение. Ток в нагрузке изменяется синусоидально. В промежутке времени от t0 до tl тиристор Т1 находится в проводящем состоянии. В момент времени t1 = t2 тиристор Т1, выключается, так как ток в цепи уменьшается до нуля. В промежутке времени от t1 до t2 диод D1 находится в проводящем состоянии и мощность передается от нагрузки к источнику питания. Диод D1 находится в проводящем состоянии до тех пор, пока на конденсаторе присутствует напряжение. Когда диод D1 находится в состоянии проводимости, тиристор Т1 смещен в обратном направлении. Таким образом, специальная цепь принудительной коммутации в этом случае не требуется. В этой схеме RLC-нагрузка обеспечивает коммутацию тиристоров. В течение отрицательного полупериода тиристор Т2 находится в проводящем состоянии, через некоторое время диод D2 начинает проводить, вследствие этого тиристор Т2 смещается в обратном направлении и запирается.

Инвертор Мак-Мюррея (инвертирующий преобразователь)

Принцип работы инвертора Мак-Мюррея основан на коммутировании тока. Полумостовой инвертор работает на индуктивную нагрузку, как изображено на рис.6. Тиристоры ТА1 и ТА2 в этой схеме являются вспомогательными. Они используются для коммутации основных тиристоров Т1 и Т2. Индуктивность L и емкость С являются коммутирующими элементами. Конденсатор предварительно заряжен слева отрицательно, а справа -положительно. Рабочие фазы этой схемы устройства следующие.

Фаза I. Тиристор Т1 запускается, тем самым инициируется положительный полупериод преобразования. Постоянный ток нагрузки протекает через тиристор Т1.

Фаза I I. В момент времени t1 запускается вспомогательный тиристор ТА1. По замкнутой цепи L, С, Т{ и ТА1 начинает протекать ток, при этом ток через конденсатор синусоидально нарастает, как показано на рис.6в. В промежутке времени от t1 до t2 значение ic <I0. В момент времени t= t2; tc = I0. Ток, текущий через тиристор Т1, становится равным нулю, и тиристор выключается. Следует заметить, что в этой фазе ток через тиристор Т1, уменьшается до нуля.

Фаза III. После выключения тиристора Т1 ток продолжает протекать через D1. Диод находится в состоянии проводимости до момента времени t3 до тех пор пока ic - I0 положительны. В момент времени t = t3 диод D1, перестает проводить, так как ток через него уменьшается до нуля.

Фаза IV. После того как диод D1 запирается, постоянный ток нагрузки протекает через конденсатор и дозаряжает его слева отрицательно, а справа положительно. Напряжение на конденсаторе изменяется линейно, так как через конденсатор протекает постоянный ток.

Фаза V. Ток через диод увеличивается, в то время как ток через конденсатор уменьшается. Когда ток через тиристор Ta уменьшается до нуля, тиристор выключается.

Фаза VI. На индуктивной нагрузке изменяется полярность напряжения, и диод D1 смещается в прямом направлении. Начинается процесс рециркуляции. Энергия, запасенная в нагрузке, передается обратно в источник питания Vr После запирания диода D1 запускается тиристор Т2. Чтобы выключить тиристор Т2 необходимо включить тиристор ТA2. Далее подобные процессы повторяются аналогично вышеизложенным.

Инвертор Мак-Мюррея – Бедфорда

Инвертор Мак-Мюррея содержит два вспомогательных тиристора. Инвертор Мак-Мюррея-Бедфорда не требует никаких вспомогательных тиристоров. Один основной тиристор в этой схеме коммутирует другой основной тиристор. Электрическая схема, рабочие фазы и форма выходного сигнала инвертора Мак-Мюррея - Бедфорда изображены на рис.7. Рабочие фазы этой схемы устройства следующие.

Фаза I. Тиристор Т1 запущен. Постоянный ток протекает через тиристор Т1 , и индуктивность L1. Напряжение на индуктивности L1 равно нулю, так как через нее протекает постоянный ток. Конденсатор С, замкнут через Т1 и L1. Конденсатор С2 заряжен до напряжения V1 + V2: верхняя обкладка заряжена положительно, а нижняя - отрицательно.

Рис.7 - а) Схема инвертора Мак-Мюррея; б) Фазы работы схемы


        Фаза
II. После включения тиристора Т2 напряжение с конденсатора С2 подается на индуктивность L2. Это напряжение равно удвоенному напряжению питания. За счет взаимной индукции на индуктивности L1 появляется напряжение, равное напряжению на индуктивности L2. Напряжение на катоде тиристора Т1 равно учетверенному напряжению питания, а на аноде удвоенному напряжению питания. Таким образом, после включения тиристора Т2 тиристор Т1 выключается. Быстрое выключение тиристора L1 возможно благодаря тому, что энергия, запасенная в индуктивности L1 передается на индуктивность L2 поскольку общий магнитный поток должен оставаться постоянным. Из рис.7в видно, что ток в схеме перераспределяется от тиристора Т1 на тиристор Т2 в начале фазы II. По цепи L2 и С2 начинает протекать ток. Диод D2 смещается в обратном направлении напряжением на конденсаторе С2.

Фаза III. Как только полярность напряжения на конденсаторе изменяется на обратную, диод D2 переходит в проводящее состояние и тем самым шунтирует конденсатор С2. Энергия, запасенная на индуктивности L2 поддерживает неизменное направление тока через тиристор Т2 и диод D2. Постепенно запасенная в индуктивности L2 энергия рассеивается на активном сопротивлении нагрузки, и тиристор Т2 выключается.

Фаза IV. Диод D2 по-прежнему смещен в прямом направлении за счет тока, протекающего через индуктивность нагрузки. Здесь имеет место процесс рециркуляции энергии, запасенной на индуктивности нагрузки. Диод D2 находится в проводящем состоянии до тех пор, пока запасенная энергия передается источнику питания V2.

Тиристор Т2 снова включается, тем самым инициируя аналогичный отрицательный полупериод инвертора. В конце отрицательного полупериода тиристор Т1 остается в проводящем состоянии и процесс, описанный выше, повторяется.

Преобразователь частоты – это устройство, предназначенное для преобразования переменного тока (напряжения) одной частоты в переменный ток (напряжение) другой частоты.

 Выходная частота в современных преобразователях может изменяться в широком диапазоне и быть как выше, так и нижечастоты питающей сети.

 Схема любого преобразователя частоты состоит изсиловойи управляющей частей. Силовая часть преобразователей обычно выполнена на тиристорах или транзисторах, которые работают в режиме электронных ключей. Управляющая часть выполняется на цифровых микропроцессорах и обеспечивает управление силовыми электронными ключами, а также решение большого количества вспомогательных задач (контроль, диагностика, защита).

 Преобразователи частоты, применяемые в регулируемом электроприводе, в зависимости от структуры и принципа работы силовой части разделяются на два класса:

 1. Преобразователи частоты с явно выраженным промежуточным звеном постоянного тока.

 2. Преобразователи частоты с непосредственной связью (без промежуточного звена постоянного тока).

 Каждый из существующих классов преобразователей имеет свои достоинства инедостатки, которые определяют область рационального применения каждого из них.

 

Исторически первыми появились преобразователи с непосредственной связью (рис. 4.), в которых силовая часть представляет собой управляемый выпрямитель и выполнена на не запираемых тиристорах. Система управления поочередно отпирает группы тиристотров и подключает статорные обмотки двигателя к питающей сети.

 

 

 

 

 

 

Таким образом, выходное напряжение преобразователя формируетсяиз «вырезанных» участков синусоид входного напряжения. На рис.5. показан пример формирования выходного напряжениядля одной из фаз нагрузки. На входе преобразователя действует трехфазное синусоидальное напряжение uа, uв, uс. Выходное напряжение uвых имеет несинусоидальную «пилообразную» форму, которую условно можно аппроксимировать синусоидой (утолщенная линия). Из рисунка видно, что частота выходного напряжения не может быть равна или выше частоты питающей сети. Она находится в диапазоне от 0 до 30 Гц. Как следствие малый диапазон управления частоты вращения двигателя (не более 1 : 10). Это ограничение не позволяет применять такие преобразователи в современных частотно регулируемых приводах с широким диапазоном регулирования технологических параметров.

 Использование не запираемых тиристоров требует относительно сложных систем управления, которые увеличивают стоимость преобразователя.

 «Резаная» синусоида на выходе преобразователя является источником высших гармоник, которые вызывают дополнительные потери в электрическом двигателе, перегрев электрической машины, снижение момента, очень сильные помехи в питающей сети. Применение компенсирующих устройств приводит к повышению стоимости, массы, габаритов, понижению к.п.д. системы в целом.

 Наряду с перечисленными недостатками преобразователей с непосредственной связью, они имеют определенные достоинства. К ним относятся:

 - практически самый высокий КПД относительно других преобразователей (98,5% и выше),

 - способность работать с большими напряжениями и токами, что делает возможным их использование в мощных высоковольтных приводах,

 - относительная дешевизна, несмотря на увеличение абсолютной стоимости за счет схем управления и дополнительного оборудования.

 

Подобные схемы преобразователей используются в старых приводах и новые конструкции их практически не разрабатываются.

 Наиболее широкое применение в современных частотно регулируемых приводах находят преобразователи с явно выраженным звеном постоянного тока (рис. 6.)

 В преобразователях этого класса используется двойное преобразование электрической энергии: входное синусоидальное напряжение с постоянной амплитудой и частотой выпрямляется в выпрямителе (В), фильтруется фильтром (Ф), сглаживается, а затем вновь преобразуется инвертором (И) в переменное напряжение изменяемой частоты и амплитуды. Двойное преобразование энергии приводит к снижению к.п.д. и к некоторому ухудшению массогабаритных показателей по отношению к преобразователям с непосредственной связью.

 Для формирования синусоидального переменного напряжения используются автономные инверторы напряжения и автономные инверторы тока.

 В качестве электронных ключей в инверторах применяются запираемые тиристоры GTO и их усовершенствованные модификации GCT, IGCT, SGCT, и биполярные транзисторы с изолированным затвором IGBT.

 Главным достоинством тиристорных преобразователей частоты, как и в схеме с непосредственной связью, является способность работать с большими токами и напряжениями, выдерживая при этом продолжительную нагрузку и импульсные воздействия.  Они имеют более высокий КПД (до 98%) по отношению к преобразователям на IGBT транзисторах (95 – 98%).

Преобразователи частоты на тиристорах в настоящее время занимают доминирующее положение в высоковольтном приводе в диапазоне мощностей от сотен киловатт и до десятков мегаватт с выходным напряжением 3 - 10 кВ и выше. Однако их цена на один кВт выходной мощности самая большая в классе высоковольтных преобразователей.

 До недавнего прошлого преобразователи частоты на GTO составляли основную долю и в низковольтном частотно регулируемом приводе. Но с появлением IGBT транзисторов произошел «естественный отбор» и сегодня преобразователи на их базе общепризнанные лидеры в области низковольтного частотно регулируемого привода.

 Тиристор является полууправляемым приборам: для его включения достаточно подать короткий импульс на управляющий вывод, но для выключения необходимо либо приложить к нему обратное напряжение, либо снизить коммутируемый ток до нуля. Для этого в тиристорном преобразователе частоты требуется сложная и громоздкая система управления.

 Биполярные транзисторы с изолированным затвором IGBT отличают от тиристоров полная управляемость,простая неэнергоемкая система управления, самая высокая рабочая частота.

 Вследствие этого преобразователи частоты на IGBT позволяют расширить диапазон управления скорости вращения двигателя, повысить быстродействие привода в целом.

 Дляасинхронного электропривода с векторным управлением преобразователи на IGBT позволяют работать на низких скоростях без датчика обратной связи.

 Применение IGBT с более высокой частотой переключения в совокупности с микропроцессорнойсистемой управления в преобразователях частоты снижает уровень высших гармоник, характерных для тиристорных преобразователей. Как следствие меньшие добавочные потери в обмотках и магнитопроводе электродвигателя,уменьшение нагрева электрической машины, снижение пульсаций момента и исключение так называемого «шагания» ротора в области малых частот. Снижаются потери в трансформаторах, конденсаторных батареях, увеличивается их срок службы и изоляции проводов, уменьшаются количество ложных срабатываний устройств защиты и погрешности индукционных измерительных приборов.

 Преобразователи на транзисторах IGBT по сравнению с тиристорными преобразователями при одинаковой выходной мощности отличаются меньшими габаритами, массой, повышенной надежностью в силу модульного исполнения электронных ключей, лучшего теплоотвода с поверхности модуля и меньшего количества конструктивных элементов.

 Они позволяют реализовать более полную защиту от бросков тока и от перенапряжения, что существенно снижает вероятность отказов и повреждений электропривода.

 На настоящий момент низковольтные преобразователи на IGBT имеют болеевысокую цену на единицу выходной мощности, вследствие относительной сложности производстватранзисторных модулей. Однако по соотношению цена/качество, исходя из перечисленных достоинств, они явно выигрывают у тиристорных преобразователей, кроме того, на протяжении последних лет наблюдается неуклонное снижение цен на IGBT модули.

 Главным препятствием на пути их использования в высоковольтном приводе с прямым преобразованием частоты и при мощностях выше 1 – 2 МВт на настоящий момент являются технологические ограничения. Увеличение коммутируемого напряжения и рабочего тока приводит к увеличению размеров транзисторного модуля, а такжетребует более эффективного отвода тепла от кремниевого кристалла.

 Новые технологии производства биполярных транзисторов направлены на преодоление этих ограничений, и перспективность примененияIGBT очень высока также и в высоковольтном приводе. В настоящее время IGBT транзисторы применяются в высоковольтных преобразователях в виде последовательно соединенных нескольких единичных модулей.

Структура и принцип работы низковольтного преобразователя частоты на IGBT транзисторах

Типовая схема низковольтного преобразователя частотыпредставлена на рис. 7. В нижней части рисунка изображены графики напряжений и токов на выходе каждого элемента преобразователя.

 Переменное напряжение питающей сети (uвх.)с постоянной амплитудой и частотой (U вх = const, f вх = const) поступает на управляемый или неуправляемый выпрямитель (1).  

Для сглаживания пульсаций выпрямленного напряжения (uвыпр.) используется фильтр (2). Выпрямитель и емкостный фильтр (2) образуют звено постоянного тока.  

С выхода фильтра постоянное напряжение u d поступает на вход автономного импульсного инвертора (3).

 Автономный инвертор современных низковольтных преобразователей, как было отмечено, выполняется на основе силовых биполярных транзисторов с изолированным затвором IGBT. Нарассматриваемом рисунке изображена схема преобразователя частоты с автономным инвертором напряжения как получившая наибольшее распространение.

 

 В инверторе осуществляется преобразование постоянного напряжения ud в трехфазное (или однофазное) импульсное напряжение u и изменяемой амплитуды и частоты. По сигналам системы управления каждая обмотка электрического двигателя подсоединяется через соответствующие силовые транзисторы инвертора к положительному и отрицательному полюсам звена постоянного тока. Длительность подключения каждой обмотки в пределах периода следования импульсов модулируется по синусоидальному закону. Наибольшая ширина импульсов обеспечиваетсяв середине полупериода, а к началу и концу полупериода уменьшается. Таким образом, система управления обеспечивает широтно-импульсную модуляцию (ШИМ) напряжения, прикладываемого к обмоткам двигателя.Амплитуда и частота напряженияопределяются параметрами модулирующей синусоидальной функции.

При высокой несущей частоте ШИМ (2 … 15 кГц) обмотки двигателя вследствие их высокой индуктивности работают как фильтр. Поэтому в них протекают практически синусоидальные токи.

В схемах преобразователей с управляемым выпрямителем (1) изменение амплитуды напряжения uи может достигаться регулированием величины постоянного напряжения ud, а изменение частоты – режимом работы инвертора.

 При необходимости на выходе автономного инвертора устанавливается фильтр (4) для сглаживания пульсаций тока. (В схемах преобразователей на IGBT в силу низкого уровня высших гармоник в выходном напряжении потребность в фильтре практически отсутствует.)

 Таким образом, на выходе преобразователя частоты формируется трехфазное (или однофазное) переменное напряжение изменяемой частоты и амплитуды (вых = var, f вых = var).


 

А также другие работы, которые могут Вас заинтересовать

49214. Виртуальная модель вертолета в среде MatLab 265.65 KB
  Математическое моделирование движителя вертолета. Создание виртуальной модели вертолета в среде VRBuilder. Особенностью моделируемого вертолета является то что используется движитель роль которого выполняет двигатель постоянного тока ДПТ.
49215. Разработка системы управления механизма передвижения тележки (мехатронного объекта) по схеме ТП-ДПТ 11.99 MB
  Целью данного курсового проекта является задача проектирования электромеханической системы (ЭМС) мехатронного модуля подъема мостового крана. Смысловая её реализации заключается в создании универсальных, надёжных и долговечных устройств, которые тем или иным образом помогали бы человеку решать поставленные перед ним задачи
49216. Разработка микропроцессорной системы управления подачей фурмы в конвертере 36.85 KB
  Разработать микропроцессорную систему управления подачей фурмы в конвертере. Разработать цифровое устройство управления подачей фурмы в конвертере. Например система управления положением кислородной фурмы осуществляет измерение и регулирование положения кислородной фурмы в соответствие с уставкой по положению фурмы над уровнем спокойной ванны с автоматической коррекцией на разгар футеровки и выдачей команды на отсечной клапан. Положение фурмы в разные этапы плавки: Первый период – наведение шлака.
49217. Принципы функционирования плазменных телевизоров 904.34 KB
  В развитых странах телевизоры есть практически в каждом доме. Если в доме есть необходимые антенны и уж по крайней мере трудно не согласиться что антенна самый большой и заметный элемент приемной системы телезрители могут принимать несколько десятков каналов предающих массу программ от мыльных опер до фильмов о природе и дискуссий о политических событиях. Некоторые думают что выбирать телевизионный приемник лучше всего по цене то есть если цена большая то и все характеристики в норме. Есть еще телевизоры с разрешением экрана...
49218. Проектирование транзисторных широкодиапазонных передатчиков 348.55 KB
  Задачей курсового расчета является проектирование транзисторного широкодиапазонного радиопередающего устройства обеспечивающего формирование радиосигналов заданном рабочем диапазоне частот и заданную мощность выделяемую на нагрузке в состав которого входят следующие каскады: ОКГ опорный кварцевый генератор являющийся источником высокостабильных колебаний необходимо произвести расчет принципиальной схемы автогенератора с кварцевым резонатором в цепи обратной связи; ССЧ синтезатор сетки частот формирующий из опорной частоты...
49219. Комплексное исследование системы мотивации производственного персонала в Восточно-Сибирской Региональной Дирекции железнодорожных вокзалов, вокзал станции Черемхово 147.36 KB
  Разработка и практическое применение новых мотивационных систем непосредственно на самих предприятиях позволяют привлекать новых высококвалифицированных специалистов, способных на деле управлять как малыми, так и большими коллективами, ориентируясь преимущественно при этом на индивидуальное мотивирование в соответствии с количеством и качеством труда, затраченного индивидом.
49220. Разработать микропроцессорную систему и цифровое устройство управления подачей добавок в ДСП 637.56 KB
  Задание на курсовую работу: Разработать микропроцессорную систему управления подачей добавок в ДСП. Разработать цифровое устройство управления подачей добавок в ДСП. В настоящее время имеется достаточно большое количество вариантов оснащения ДСП различными устройства подачей добавок. При этом стоит задача управления отдельными локальными потоками подачи в печь добавок.
49221. Исследование фильтрационного потока от нагнетательной скважины к эксплуатационной и исследование нерадиального установившегося движения жидкости и газов к одной скважине 279.55 KB
  ВЫЯСНЕНИЕ ВЛИЯНИЯ ФОРМЫ КОНТУРА ОБЛАСТИ ПИТАНИЯ НА ДЕБИТ СКВАЖИНЫ И РАСПРЕДЕЛЕНИЕ ДАВЛЕНИЯ В ПЛАСТЕ ИССЛЕДОВАНИЕ ФИЛЬТРАЦИОННОГО ПОТОКА ОТ НАГНЕТАТЕЛЬНОЙ СКВАЖИНЫ К ЭКСПЛУАТАЦИОННОЙ НЕРАДИАЛЬНОЕ ДВИЖЕНИЕ ЖИДКОСТИ К СКВАЖИНЕ ПРИ КРУГОВОМ КОНТУРЕ ОБЛАСТИ...
49222. Разработка устройства для сигнализации давления в 6-ти точках 159.63 KB
  Идентифицировать номер датчика и сигнал01. Начало =6;B=1 Опрос датчика Вывод в порт № датчика K=0 да нет Вывод в порт Вывод в порт B=B1 B=B1 B B нет нет да да Конец Разработать устройство для сигнализации давления в 6ти точках. Идентифицировать номер датчика и сигнал01. Реализация программы управления на языке SSEMBLER MVI D 6 Колво датчиков = 6 MVI B 1 № первого датчика For IN1 Проводим опрос OUT 2 Подаем значение в порт0 или1 MOV B Выводим номер датчика OUT 3 Выводим этот номер в порт INR B 1 CMP D Сравнение с пред...