96324

Проектирование и расчет РПрУ РЛС визуального определения объектов

Курсовая

Коммуникация, связь, радиоэлектроника и цифровые приборы

Для извлечения информации используется зондирование пространства радиосигналами с последующим приемом отражённой от целей электромагнитной энергии причем информация о целях может содержаться в изменении во времени амплитуды и частоты сигналов. В радиолокации под приемным устройством понимают цепи расположенные между выходами...

Русский

2015-10-05

92.12 KB

31 чел.

Государственное образовательное учреждение

Высшего профессионального образования

Саратовский государственный технический университет
имени Гагарина Ю. А.

Кафедра «Радиоэлектроники и телекоммуникации»

КУРСОВАЯРАБОТА

"Проектирование и расчет РПрУ РЛС визуального определения объектов "

По дисциплине:

«Радиоприемные устройства СМС»

выполнил :студент гр. ИКТС-41

Иванин В.В.

№ зач. книжки 111183

Проверил преподаватель:
Скворцов А.А

Саратов 2015 г.


Содержание

Введение…………………………………………………………………………...3

Исходные данные…………………………………………………………………4

Выбор и обоснование структурной схемы приемника…………………………4

Определение эквивалентных параметров антенны……………………………..5

Расчет полосы  пропускания  линейного  тракта РПрУ………………………..5

Определение  структуры  радиотракта…………………………………………..9

Обеспечение необходимого усиления трактом ВЧ……………………………..9

Обеспечение необходимого усиления трактом НЧ……………………………10

Окончательная структурная схема приёмника………………………………...10

Заключение ………………………………………………………………………11

Список литературы ……………………………………………………………...12


Введение

Радиолокационный  приёмник   является  составной  частью  радиолокационных станций, предназначенных для обнаружения, определения координат и параметров движения удаленных объектов (радиолокационных целей). Для извлечения информации используется зондирование пространства радиосигналами, с последующим приемом отражённой от целей электромагнитной энергии, причем информация о целях может содержаться в изменении во времени амплитуды  и частоты сигналов. Такой способ носит название активной радиолокации с пассивным ответом. Передатчик и приёмник в таких системах, как правило, работают на общую  антенну.

РЛС облучают объект (самолет, корабль и т.д.) радиоволнами и определяют его параметры, принимая отраженную от объекта энергию радиоволн. Поэтому радиолокационный приемник является частью РЛС и работает от общей с передатчиком приемопередающей антенны. Различают РЛС непрерывного и импульсного излучения. Сейчас наиболее широко используются импульсные РЛС.

Радиоприемное устройство состоит из антенны, собственно приемника и оконечного устройства. В радиолокации под приемным устройством понимают цепи, расположенные между выходами антенны и оконечного устройства, принимающего решение об обнаружении сигнала или оценки его параметров. Обработка сигнала в приемнике предусматривает обнаружение сигнала, отраженного от цели, и определение его параметров. Функции обнаружения сигнала и измерения его параметров могут быть расчленены.

В радиолокации при работе на сверхвысоких частотах (СВЧ) колебания усиливаются параметрическими и квантовыми парамагнитными усилителями. Узлы СВЧ проектируют с помощью интегральной технологии (полосковая техника). На более низких и видеочастотах в усилителях в качестве элементной базы используют транзисторы и устройства микроэлектронной (интегральной) аналоговой техники.


Выбор и обоснование структурной схемы приёмника

Существенное улучшение всех показателей РПрУ достигается на основе принципа преобразования частоты принимаемого сигнала - переноса  его в частотную  область, где он может быть обработан с наибольшей эффективностью. Самое широкое распространение во всех радиодиапазонах получила построенная на  этом принципе схема супергетеродинного приемника.  Эта схема в настоящее время наиболее совершенна.

Приемники супергетеродинного типа позволяют успешно решать задачи получения требуемой фильтрации принимаемого сигнала, обеспечение заданного усиления, решение проблемы селективности, простоты перестройки, которая обеспечивается с помощью простых колебательных систем преселектора.

Широкополостность приемников импульсных сигналов позволяет, как правило, строить такие приемники с однократным преобразованием частоты.

Из выше сказанного можно сделать вывод, что построение проектируемого РПрУ целесообразно выполнять по супергетеродинной схеме, наилучшим образом удовлетворяющей заданным техническим требованиям.

Амплитуда сигналов, поступающих на вход радиолокационного РПрУ, изменяется в широких пределах, т.к. мощность отраженных от цели сигналов обратно пропорциональна четвертой степени расстояния до цели (которое может меняться) и, кроме того, зависит от типа цели и её эффективной поверхности рассеивания. Работа РЛС в реальных условиях сопровождается действием разного рода активных и пассивных нестационарных помех естественного и искусственного происхождения, уровень мощности которых зачастую значительно (на 20..60 дБ) превышает уровень полезного сигнала, а параметры априорно неизвестны. Воздействие помех еще больше расширяет диапазон изменения сигналов, поступающих в антенну РЛС.

рис.1

Структурная схема приемника с однократным преобразованием частоты представлена (рис.1):

  1.  АФТ – антенно-фидерное устройство;
  2.  ВЦ - входная цепь; СМ - смеситель;
  3.  Г - гетеродин;
  4.  ДМ - демодулятор;
  5.  Н - нагрузка;
  6.  АРУ - автоматическая регулировка усиления;
  7.  АПЧГ - автоматическая подстройка частоты гетеродина;
  8.  ПРД – передатчик.

Определение эквивалентных параметров антенны

Проектируемый радиолокационный приемник имеет настроенную антенну, т.е. её сопротивление чисто активно и равно сопротивлению фидера:

Относительная  шумовая  температура  антенны:

где,

- стандартная  температура  приёмника  =290 0 К ;

- абсолютная шумовая температура антенны.

Для нашей приемной антенны примем:   =140 0 К.

                            

Расчет полосы  пропускания  линейного  тракта РПрУ

Для импульсных сигналов полоса пропускания приемника выбирается исходя из получения максимального отношения сигнал/шум на выходе радиотракта. Вычисляем ширину спектра радиочастот, принимаемых сигналов:

Подсчитываем полосу пропускания преселектора. Ширина полосы пропускания линейного тракта П складывается из ширины спектра принимаемого сигнала , доплеровского смещения частоты сигнала  и запаса полосы, требуемого для учета нестабильностей и неточностей настроек приемника :

Доплеровское  смещение:

где

с - скорость света в вакууме.

Определяем запас полосы пропускания, необходимый для приема сигналов с учетом нестабильностей:

,

где

бс - относительная нестабильность несущей частоты  принимаемого  сигнала; при использовании в передатчике кварцевой стабилизации частоты несущей можно получить бс =(10-5...10-6);

бг- относительная нестабильность  частоты гетеродина, которую на данном этапе  можно оценить лишь приблизительно.  Выбрав   транзисторный   однокаскадный   гетеродин   с кварцевой  стабилизацией, получаембг=10-6;

бпр- относительная погрешность и  нестабильность настройки контуров тракта промежуточной  частоты, принимаем бпр=(0,0003...0,003);

бн- относительная нестабильность частоты, вызванная неточностью настройки контуров гетеродина,  бн =  (0,001...0,01);

Промежуточная частота выбирается исходя из  условий:

где

Sзкз - заданное ослабление зеркального канала, которое принимаем равным 25 дБ (320 раз);

n - число колебательных систем в преселекторе,  n=2,

Qк – добротность резонансного контура в ППФ в радиотракте, для обеспечения требований избирательности по зеркальному каналу.

В РЛП миллиметрового и сантиметрового диапазонов промежуточная частота равна либо 30, либо 60 МГц. Выберем  промежуточную  частоту  из  стандартного  ряда:

Частота  гетеродина:    

Для обеспечения устойчивости работы выбираем коэффициент частотной автоподстройки и находим полосу пропускания линейного тракта:

При использовании ЧАПЧ с  Кчапч=10 полоса пропускания приемника:

При использовании ФАПЧ  полоса пропускания приемника:

ПФАПЧ получилась уже, чем ПЧАПЧ, поэтому будем использовать ЧАПЧ.

Полоса пропускания:

Отношение сигнал/шум связано с флуктуационной ошибкой соотношением:

,      

где

полоса Fэ =(5..10)/2 2

Необходимо учитывать потери в отношении  сигнал/шум, возникающие из-за следующих причин:

  1.  потери при распространении радиоволн 1 = 1...3 дБ
  2.  потери в антенно-фидерном тракте  2 = 1 дБ
  3.  потери при амплитудном детектировании  3 = 1...5 дБ
  4.  потери на квантование  4 = 2 дБ ( при  двухуровневом квантовании )

Суммарный коэффициент потерь: = i = 5...10 дБ.

Примем  = 10 [дБ] = 3,16 [раз]

Отношение сигнал/шум с учетом потерь:

Расчет предельно допустимого коэффициента шума:

где:

Кр.ф. 0,8 - коэффициент  передачи  фидера  по  мощности.

Пш = 1,1П = 1,1130=143 МГц.

К - постоянная  Больцмана  К=1,3810-23 Дж/К.

Определение  структуры  радиотракта

АФТ представляет из себя волновод соединяющий антенну с последующими каскадами. Оценим коэффициент шума линейного тракта РПрУ, после чего решим вопрос о включении или невключении  УРЧ в состав радиотракта.

Также в радиотракте следует установить устройство защиты УЗ, которое защитит приёмник от протикающей через антенный переключатель из передатчика ПРД 1% мощности излучаемого сигнала (≈10Вт). УЗ представляет из себя полупроводниковый диодный ограничитель.

Коэффициент шума радиотракта  без  использования  усилителя радиочастоты:

Все  коэффициенты  шума  ориентировочно:

Швц=1,3         Квц=0,8 коэффициент передачи входной цепи

Шпч=5            Кпч=8  (при  использовании  транзисторного  ПЧ)

Шупч=10  КФ=0,8 коэффициент передачи фильтра

 

 

Обеспечение необходимого усиления трактом ВЧ

Обеспечение достаточного усиления радиосигнала трактом ВЧ необходимо для нормальной работы детектора, а так же получения низкого уровня шума. Основное усиление обеспечивается в тракте ПЧ. Основными требованиями к усилительным каскадам линейного тракта являются их достаточная устойчивость (возможно меньшее число каскадов) и построение на основе наиболее экономичной и современной электронной базы.

Коэффициент усиления линейного тракта:

,

где,

RА - активное сопротивление антенны;

Uпр - амплитуда сигнала на выходе УПЧ;

Требуемая амплитуда сигнала на выходе УПЧ определяется амплитудой напряжения, необходимой для нормальной работы детектора: Uвых=1В.

Расчет коэффициента усиления линейного тракта:

Обеспечение необходимого усиления трактом НЧ

Коэффициент передачи диодного детектора KД примем равным 0,7. Следовательно, коэффициент усиления видеоусилителя КВУ будет равен:

Окончательная структурная схема приёмника

рис.2


Заключение

В процессе проектирования, мы получили практические знания и навыки в области проектирования радиоприёмных устройств. Пробовали и применяли различные способы подхода к выбору структурных схем блоков, узлов и радиоприёмника в целом. Рассчитывали отдельный блок приёмника, что позволило более точно понять работу этого блока, и его вклад в общую работу схемы. Изучили особенности работы радиолокационного приёмника.


Список литературы

  1.  Методические указания по проектированию радиоприёмных устройств. - Бакалов В.П., Белоусов Н.Н., Выборный В.Г (под редакцией Протопопова А.С.) Москва1999г
  2.  Проектирование РПУ.   Под редакцией Сиверса. 1976г.
  3.  Расчет радиоприемников.  Бобров Н.В. и др. 1971г.


 

А также другие работы, которые могут Вас заинтересовать

17430. Работа со строковыми величинами 34.5 KB
  Лабораторная работа №11Работа со строковыми величинами Цель работы: Сформировать понятие величин полусоставного типа. Научиться составлять алгоритмы обработки строковых переменных. Задание 12. Решите две из следющих задач с сайта informatics.mccme.ru дистанционная подготов...
17431. Расчет объема перевозок и грузооборота в автотранспортных предприятиях 151.5 KB
  Определить объем перевозок и грузооборота в автотранспортных предприятиях исходя из следующих данных. По схеме рассчитываем объем перевозок грузов и грузооборот в зависимости от временного влияния на них любых двух показателей...
17433. Исследование управляемого выпрямителя на тиристорах 316.34 KB
  Отчет по лабораторной работе №4 Исследование управляемого выпрямителя на тиристорах Цель работы: изучение принципа регулирования выходного напряжения выпрямителя; ознакомление с работой схемы бесконтактного регулируемого выпрямительного устройства Описани
17434. Определение компонентов системного блока 43.5 KB
  Лабораторная работа Определение компонентов системного блока Краткие теоретические сведения 1. При подаче питания на процессор происходит его обращение к микросхеме ПЗУ и запуск программы инициализирующей работу компьютера. В этот момент на экране монитора набл...
17435. Ознайомлення з роботою широтно-імпульсного модулятора 248.5 KB
  Мета роботи :Ознайомлення з роботою широтноімпульсного модулятора. Теоретичні відомості Широтноімпульсна модуляція ШІМ англ. Pulsewidth modulation PWM наближення бажаного сигналу багаторівневого або неперервного до дійсних бінарних сигналів таким чином щоби в середнь...
17436. Ознайомлення з принципом роботи частотомірів 701 KB
  Мета роботи Ознайомлення з принципом роботи частотомірів Теоретичні відомості Вимірювання частоти та періоду сигналів по методу прямого перетворення базується на реалізації двох операцій: перетворенні вимірюваного сигналу в послідовність дискретних імпульсів ц
17437. Ознайомлення з принципом роботи аналого-цифрових перетворювачів порозрядного зрівноваження 402 KB
  Мета роботи :Ознайомлення з принципом роботи аналогоцифрових перетворювачів порозрядного зрівноваження. Теоретичні відомості Аналогоцифрове перетворення використовується для обробки зберігання або передачі аналогових сигнал в цифровій формі. Наприклад швидкі в
17438. Ознайомлення з роботою систем автоматичного регулювання зі зворотнім зв’язком 198 KB
  Мета роботи:Ознайомлення з роботою систем автоматичного регулювання зі зворотнім звязком. Теоретичні відомості Значні обчислювальні та логічні можливості ЕОМ визначають їх використання для керування автоматизованими обєктами. Інтегральні пристрої цифрового опр