96384

Полный факторный эксперимент типа 2k и свойства матрицы планирования

Доклад

Математика и математический анализ

Первый этап планирования эксперимента для получения линейной модели основан на варьировании факторов на двух уровнях. В этом случае если число факторов известно можно сразу найти число опытов необходимое для реализации всех возможных сочетаний уровней факторов.

Русский

2015-10-05

119.5 KB

8 чел.

САНКТ-ПЕТЕРБУРКСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ТЕЛЕКОММУНИКАЦИЙ ИМ. М. А. БОНЧ-БРУЕВИЧА

Доклад

На тему: «Полный факторный эксперимент типа 2k и свойства матрицы планирования»

Выполнил: Студент группы № СМ-51

Хватов А. С.

Проверил: доц. Кафедры ПДС

Пантюхин О. И.

Санкт-Петербург

2010

Полный факторный эксперимент

 

Первый этап планирования эксперимента для получения линейной модели основан на варьировании факторов на двух уровнях. В этом случае, если число факторов известно, можно сразу найти число опытов, необходимое для реализации всех возможных сочетаний уровней факторов. Простая формула: , где N – число опытов, k– число факторов, 2 – число уровней. В общем случае эксперимент, в котором реализуются все возможные сочетания уровней факторов, называется полным факторным экспериментом. Если число уровней каждого фактора равно двум, то имеем полный факторный эксперимент типа 2k.

Нетрудно написать все сочетания уровней в эксперименте с двумя факторами. Напомним, что в планировании эксперимента используются кодированные значения факторов: +1 и –1 (часто для простоты записи единицы опускают). Условия эксперимента можно записать в виде таблицы, где строки соответствуют различным опытам, а столбцы – значениям факторов. Будем называть такие таблицы матрицами планирования эксперимента.

Матрица планирования для двух факторов приведена ниже

№ опыта

x1

x2

y

1

–1

–1

y1

2

+1

–1

y2

3

–1

+1

y3

4

+1

+1

y4

Каждый столбец в матрице планирования называют вектор столбцом, а каждую строку – вектор строкой. Таким образом, мы имеем 2 вектор столбца независимых переменных и один вектор-столбец параметра оптимизации.

Если для двух факторов все возможные комбинации уровней легко найти прямым перебором (или просто запомнить), то с ростом числа факторов возникает необходимость в некотором приеме построения матриц. Из многих возможных обычно используется три приема, основанные на переходе от матриц меньшей размерности к матрицам большей размерности. Рассмотрим первый. При добавлении нового фактора каждая комбинация уровней исходного плана встречается дважды: в сочетании с нижним и верхним уровнями нового фактора. Отсюда естественно появляется прием: записать исходный план для одного уровня нового фактора, а затем повторить его для другого уровня. Вот как это выглядит при переходе от эксперимента 22 к 23:

№ опыта

x1

x2

x3

y

1

+

y1

2

+

+

y2

3

+

+

y3

4

+

+

+

y4

5

y5

6

+

y6

7

+

y7

8

+

+

y8

Этот прием распространяется на построение матриц любой размерности.

Рассмотрим второй прием. Для этого введем правило перемножения столбцов матрицы. При построчном перемножении двух столбцов матрицы произведение единиц с одноименными знаками дает +1, а с разноименными –1. Воспользовавшись этим правилом, получим для случая, который мы рассматриваем, вектор-столбец произведения x1x2 в исходном плане. Далее повторим еще раз исходный план, а у столбца произведений знаки поменяем на обратные. Этот прием тоже можно перенести на построение матриц любой размерности, однако он сложнее, тем первый.

Третий прием основан на правиле чередования знаков. В первом столбце знаки меняются поочередно, во втором столбце они чередуются через два, в третьем – через 4, в четвертом – через 8 и т. д. по степеням двойки.

 

Свойства полного факторного эксперимента типа 2k

 

Мы научились строить матрицы планирования полных факторных экспериментов с факторами на двух уровнях. Теперь выясним, какими общими свойствами эти матрицы обладают независимо от числа факторов. Говоря о свойствах матриц, мы имеем в виду те из них, которые определяют качество модели. Ведь эксперимент и планируется для того, чтобы получить модель, обладающую некоторыми оптимальными свойствами. Это значит, что оценки коэффициентов модели должны быть наилучшими и что точность предсказания параметра оптимизации не должна зависеть от направления в факторном пространстве, ибо заранее неясно, куда предстоит двигаться в поисках оптимума.

Два свойства следуют непосредственно из построения матрицы. Первое из них – симметричность относительно центра эксперимента – формулируется следующим образом: алгебраическая сумма элементов вектор столбца каждого фактора равна нулю, или, где j – номер фактора, N – число опытов, i = 1, 2, ..., k .

Второе свойство – так называемое условие нормировки – формулируется следующим образом: сумма квадратов элементов каждого столбца равна числу опытов, или Это следствие того, что значения факторов в матрице задаются +1 и –1.

Это свойства отдельных столбцов матрицы планирования. Теперь остановимся на свойстве совокупности столбцов. Сумма почленных произведений любых двух вектор столбцов матрицы равна нулю, или                              

.

Это важное свойство называется ортогональностью матрицы планирования.

Последнее, четвертое свойство называется ротатабельностью, т. е. точки в матрице планирования подбираются так, что точность предсказания значений параметра оптимизации одинакова на равных расстояниях от центра эксперимента и не зависит от направления.

 

Полный факторный эксперимент и математическая модель

 

Для движения к точке оптимума нам нужна линейная модель . Наша цель – найти по результатам эксперимента значения неизвестных коэффициентов модели. До сих пор, говоря о линейной модели, мы не останавливались на важном вопросе о статистической оценке ее коэффициентов. Теперь необходимо сделать ряд замечаний по этому поводу. Можно утверждать, что эксперимент проводится для проверки гипотезы о том, что линейная модель  адекватна. Греческие буквы использованы для обозначения «истинных» генеральных значений соответствующих неизвестных. Эксперимент, содержащий конечное число опытов, позволяет только получить выборочные оценки для коэффициентов уравнения Их точность и надежность зависят от свойств выборки и нуждаются в статистической проверке. Как производится такая проверка, будет показано ниже. А пока займемся вычислением оценок коэффициентов. Их можно вычислить по простой формуле

,

обоснование которой будет приведено ниже. Воспользуемся этой формулой для подсчёта коэффициентов  и :

,

.

Благодаря кодированию факторов расчет коэффициентов превратился в простую арифметическую процедуру. Для подсчета коэффициента  используется вектор-столбец х1, а для  – столбец x2. Остается неясным, как найти . Если уравнение  справедливо, то оно верно и для средних арифметических значений переменных: . Но в силу свойства симметрии . Следовательно, . Мы показали, что  есть среднее арифметическое значений пара метра оптимизации. Чтобы его получить, необходимо сложить все и разделить на число опытов. Чтобы привести, эту процедуру в соответствие с формулой для вычисления коэффициентов, в матрицу планирования удобно ввести вектор-столбец фиктивной переменной x0которая принимает во всех опытах значение +1. Это было уже учтено в записи формулы, где принимало значения от 0 до k.

Теперь у нас есть все необходимое, чтобы найти неизвестные коэффициенты линейной модели

.

Коэффициенты при независимых переменных указывают на силу влияния факторов. Чем больше численная величина коэффициента, тем большее влияние оказывает фактор. Если коэффициент имеет знак плюс, то с увеличением значения фактора параметр оптимизации увеличивается, а если минус, то уменьшается. Величина коэффициента соответствует вкладу данного фактора в величину параметра оптимизации при переходе фактора с нулевого уровня на верхний или нижний.

Иногда удобно оценивать вклад фактора при переходе от нижнего уровня к верхнему уровню. Вклад, определенный таким образом, называется вкладом фактора (иногда его называют основным или главным эффектом). Он численно равен удвоенному коэффициенту. Для качественных факторов, варьируемых на двух уровнях, основной уровень не имеет физического смысла. Поэтому понятие «эффект фактора» является здесь естественным.

Планируя эксперимент, на первом этапе мы стремимся получить линейную модель. Однако у нас нет гарантии, что в выбранных интервалах варьирования процесс описывается линейной моделью. Существуют способы проверки пригодности линейной модели (проверка адекватности). А если модель нелинейная, как количественно оценить нелинейность, пользуясь полным факторным экспериментом?

Один из часто встречающихся видов нелинейности связан с тем, что эффект одного фактора зависит от уровня, на котором находится другой фактор. В этом случае говорят, что имеет место эффект взаимодействия двух факторов. Полный факторный эксперимент позволяет количественно оценивать эффекты взаимодействия. Для этого надо, пользуясь правилом перемножения столбцов, получить столбец произведения двух факторов. При вычислении коэффициента, соответствующего эффекту взаимодействия, с новым вектор столбцом можно обращаться так же, как с вектор столбцом любого фактора. Для полного факторного эксперимента 22 матрица планирования с учетом эффекта взаимодействия будет иметь вид

 

№ опыта

x0

x1

x2

x1x2

y

1

+1

+1

+1

+1

y1

2

+1

–1

+1

–1

y2

3

+1

–1

–1

+1

y3

4

+1

+1

–1

–1

y4

 

Очень важно, что при добавлении столбцов эффектов взаимодействий все рассмотренные свойства матриц планирования сохраняются.

Теперь модель выглядит следующим образом:

.

Коэффициент  вычисляется обычным путем

.

Столбцы x1 и x2 задают планирование – по ним непосредственно определяются условия опытов, а столбцы x0 и x1x2 служат только для расчета.

Обращаем ваше внимание на то, что при оптимизации мы стремимся сделать эффекты взаимодействия возможно меньшими. В задачах интерполяции, напротив, их выявление часто важно и интересно.

С ростом числа факторов число возможных взаимодействий быстро растет. Мы рассмотрели самый простой случай, когда имелось одно взаимодействие. Обратимся теперь к полному факторному эксперименту 23.

 

№ опыта

x0

x1

x2

x3

x1x2

x1x3

x2x3

x1x2x3

y

1

+

+

+

+

y1

2

+

+

+

+

y2

3

+

+

+

+

y3

4

+

+

+

+

+

+

+

+

y4

5

+

+

+

+

y5

6

+

+

+

+

y6

7

+

+

+

+

y7

8

+

+

+

+

y8

 

Эффект взаимодействия x1x2xполучается перемножением всех трех столбцов и называется эффектом взаимодействия второго порядка. Эффект взаимодействия двух факторов называется эффектом взаимодействия первого порядка. Вообще, эффект взаимодействия максимального порядка в полном факторном эксперименте имеет порядок, на единицу меньший числа факторов. Довольно часто применяются синонимы: парные эффекты взаимодействия (x1x2,x2x3...), тройные (x1x2x3x2x3x4...) и т. д.

Полное число всех возможных эффектов, включая b0, линейные эффекты и взаимодействия всех порядков, равно числу опытов полного факторного эксперимента. Чтобы найти число возможных взаимодействий некоторого порядка, можно воспользоваться обычной формулой числа сочетаний

,

где  число факторов, m – число элементов во взаимодействии. Так, для плана 24 число парных взаимодействий равно шести

.

Поясним физический смысл эффекта взаимодействия следующим примером. Пусть на некоторый химический процесс влияют два фактора: температура и время реакции. В области низких температур увеличение времени увеличивает выход продукта. При переходе в область высоких температур эта закономерность нарушается. Здесь, напротив, необходимо уменьшать время реакции. Это и есть проявление эффекта взаимодействия.

Ортогональность матрицы планирования позволяет получить независимые друг от друга оценки коэффициентов. Это означает, что величина любого коэффициента не зависит от того, какие величины имеют другие коэффициенты.

Однако сформулированные выше утверждения справедливы лишь в том случае, если модель включает только линейные эффекты и эффекты взаимодействия. Между тем, существенными могут оказаться коэффициенты при квадратах факторов, их кубах и т. д. Так, для случая существенных квадратичных членов в двухфакторном эксперименте модель можно записать так:

.

Какую информацию о квадратичных членах можно извлечь из полного факторного эксперимента?

Попытка построения вектор-столбцов для  и  при водит к получению единичных столбцов, совпадающих друг с другом и со столбцом х0. Так как эти столбцы неразличимы, то нельзя сказать, за счет чего получилась вели чина b0.Она включает значение свободного члена и вклады квадратичных членов. В этом случае говорят, что имеет место смешанная оценка. Это символически записывается следующим образом:

,

где b– вычисленный нами коэффициент, а греческими буквами, как принято в статистике, обозначены неизвестные истинные значения свободного члена () и квадратичных коэффициентов (). Если бы мы сделали сколь угодно много опытов, то в пределе получили бы истинные значения коэффициентов. На практике реализуются лишь малые выборки, по которым вычисляются оценки истинных коэффициентов.

По отношению к квадратичной модели для двух факторов получается такая система смешивания:

,        ,          ,         .

Следовательно, оценки всех коэффициентов, кроме b0не смешаны.

Число опытов в полном факторном эксперименте превышает число коэффициентов линейной модели, причем тем больше, чем больше факторов. Разность между числом опытов и числом коэффициентов во многих случаях оказывается очень велика, и возникает естественное желание сократить число необходимых опытов.


 

А также другие работы, которые могут Вас заинтересовать

75611. РАЗЛОЖЕНИЕ ФУНКЦИЙ В КОМПЛЕКСНЫЙ РЯД ФУРЬЕ 60.5 KB
  Это и есть разложение в комплексный ряд Фурье. Коэффициенты Сk называются комплексными коэффициентами Фурье и, подобно действительным коэффициентам Фурье, вычисляются как скалярные произведения
75612. КЛЮЧЕВЫЕ ОПЕРАЦИИ ЦОС 191 KB
  Применяется для вычисления выходного сигнала yt линейной системы по заданному входному xt и известному импульсному отклику ht рис. Линейными называются системы для которых справедлив принцип суперпозиции отклик на сумму входных сигналов равен сумме откликов на эти сигналы по отдельности и принцип однородности изменение амплитуды входного сигнала вызывает пропорциональное изменение амплитуды выходного сигнала. Для реальных систем объектов свойство линейности может выполняться приближенно В системах цифровой обработки...
75613. ПРОГРАММИРОВАНИЕ КЛЮЧЕВЫХ ОПЕРАЦИЙ ЦОС В MATLAB 51.5 KB
  Основные арифметические операции в MATLAB: сложение, вычитание, умножение , деление и возведение в степень. Операции умножения, деления и возведения в степень рассчитаны на работу с матрицами, поэтому при поэлементных операциях они записываются
75614. Цифровая фильтрация 152 KB
  согласованные фильтры; фильтры для борьбы с шумами при нелинейных и нестационарных процессах фильтр ГильбертаХуанга Выбор способа борьбы с шумами должен производится с учетом свойств и особенностей информативного сигнала и помехи. Чем в большей степени свойства сигнала и шума априори известны тем может быть получен больший эффект от цифровой обработки. Кроме того несмотря на обилие стандартных доведенных до уровня готовых программ цифровой обработки с учетом конкретных априори известных свойствах информативного сигнала и шума может...
75615. ОПТИМАЛЬНАЯ И СОГЛАСОВАННАЯ ФИЛЬТРАЦИЯ 170.5 KB
  Оптимальная фильтрация Оптимальное выделение сигнала из шума можно проводить различными методами в зависимости от того какая задача ставится: обнаружение сигнала сохранение формы сигнала и т. В каждом методе оптимальной фильтрации вводится понятие критерия оптимальности согласно которому строится оптимальный алгоритм обработки сигнала. Оптимальный фильтр КолмогороваВинера Фильтры низкой частоты высокой частоты и полосовые фильтры эффективны в том случае когда частотные спектры сигнала и шума не...
75616. ПРИМЕНЕНИЕ ЦОС ДЛЯ ОБРАБОТКИ КОРОТКИХ СИГНАЛОВ. ОКОННАЯ ФИЛЬТРАЦИЯ 233.5 KB
  В том случае если анализируется одночастотный сигнал и он занимает все временное окно массив частотного спектра содержит только один ненулевой элемент номер которого равен количеству периодов сигнала во временном окне. Если же сигнал занимает не все временное окно а его часть то частотный спектр будет растекаться т. Для упрощения записи формулы приводятся в аналитической а не в дискретной форме с временным окном...
75617. ИЗУЧЕНИЕ ЗАКОНОМЕРНОСТЕЙ ФОРМИРОВАНИЯ НАНОЧАСТИЦ КОБАЛЬТА В СТРУКТУРЕ ПОЛИМЕРНЫХ МАТРИЦ НА ОСНОВЕ МОДИФИЦИРОВАННОГО ТЕТРАФТОРЭТИЛЕНА 7.57 MB
  Влияние концентрации исходного раствора хлорида кобальта при имплантации ионов кобальта в полимерную матрицу на основе политетрафторэтилена на размер получаемых наночастиц кобальта; влияние концентрации исходного раствора хлорида кобальта при имплантации ионов кобальта в полимерную матрицу на основе политетрафторэтилена на глубину проникновения наночастиц кобальта;
75618. ИЗМЕНЧИВОСТЬ МОРФОЛОГИЧЕСКИХ ПРИЗНАКОВ В ПРИРОДНЫХ ПОПУЛЯЦИЯХ СМОРОДИНЫ 291.5 KB
  Листья растений смородины Биберштейна значительно крупнее листьев смородины альпийской. У смородины Биберштейна среднее значение листа по признаку «длинна главной жилки» составляет – 5,2 см, а у смородины альпийской – 2,21 см.
75619. ИЗМЕНЕНИЕ БИОХИМИЧЕСКИХ ПОКАЗАТЕЛЕЙ ПРИ ВИРУСНЫХ ГЕПАТИТАХ 275.5 KB
  Клинические проявления хронического вирусного гепатита в типичных случаях выражены слабо, малоспецифичны и в следствие этого нередко остаются незамеченными. Наиболее главным симптомам является пожелтение кожи, то есть желтушное окрашивание кожи и склер, заметив которое, больные обычно и идут на прием к врачу.