96692

Операционные усилители и преобразователи сигналов на их базе

Курсовая

Коммуникация, связь, радиоэлектроника и цифровые приборы

В некоторых ОУ для увеличения входного сопротивления применяют дополнительные входные каскады - эмиттерные повторители на биполярных транзисторах и истоковые повторители на полевых униполярных транзисторах. Схема дифференциального усилителя на базе электронного моста с n-p-n биполярными транзисторами.

Русский

2015-10-08

435 KB

2 чел.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ

Подольский институт (филиал) Федерального государственного бюджетного образовательного учреждения высшего профессионального образования «Московский государственный машиностроительный университет (МАМИ)»

в г. Подольске Московской области

/Подольский институт (филиал) Университета машиностроения

Курсовой проект
по дисциплине.


“Электроника и микропроцессорная техника”
на тему.


<Операционные усилители и преобразователи сигналов на их базе>

                                                             

                                                             Разработал:  студент гр. 6-31 Быстров М.Ю.

                                                             Работу проверил:   Григораш  В.В.

                                                    Содержание.



Введение.

1-Общие сведения  об операционных  усилителях.-3
2-
 Система параметров, характеризующих операционный усилитель.-6
3-Диференциальный  усилитель.-13
4- Биполярный транзистор.-17
5-Полевой транзистор.-28
6-Эммитерный повторитель.-37

Список литературы













Введение.

Операционный усилитель – универсальный функциональный элемент, широко

используемый в современных схемах формирования и преобразования

информационных сигналов различного назначения как в аналоговой, так и в

цифровой технике.

Наименование «операционный усилитель» обусловлено тем, что, прежде всего

такие усилители получили применение для выполнения операций суммирования сигналов, их дифференцирования, интегрирования, инвертирования и т. д.

Операционные усилители были разработаны как усовершенствованные балансные схемы усиления.

Усложнение схем операционных усилителей (современные операционные усилители включают десятки, а иногда и сотни элементарных ячеек: регистров, диодов, транзисторов, конденсаторов), использование генераторов стабильных токов и ряд других усовершенствований существенно расширили сферу возможных применений операционных усилителей.

Изложенное показывает целесообразность изучения принципов построения,

особенностей работы и применения операционных усилителей как элементов

различных устройств и систем обработки информационных сигналов. В настоящей работе предпринята попытка создать пособие по разделу «Операционные усилители и преобразователи на их базе» для самостоятельного изучения в рамках дисциплины «Электроника и микропроцессорная техника».


Операционные усилители (ОУ) – исторически сложившееся название, связанное с использованием этих усилителей для моделирования операций. Они относятся к классу усилителей постоянного тока (УПТ) прямого усиления. Характерными особенностями ОУ являются: большой коэффициент усиления, большое входное и малое выходное сопротивления, широкая полоса пропускания, дифференциальный вход. Перечисленные свойства, а также интегральная технология изготовления сделали ОУ одним из основных компонентов современных аналоговых электронных схем. ОУ также нашли широкое применение и в импульсной технике в качестве компараторов, релаксационных генераторов. Основой ОУ является дифференциальный каскад типа балансного УПТ, рассмотренный выше.

Условное графическое обозначение ОУ и его основные выводы показаны на рис. 63, ОУ по отношению к нулевому уровню имеет два входа и один выход.

Вход I, обозначенный знаком "+", называют неинвертиртирующим. Выходное напряжение ОУ совпадает по знаку со входным напряжением на этом входе.

Вход 2, обозначенный знаком "-", называют инвертирующим - выходное напряжение и входное напряжение на этом входе противоположны по знаку. Между входами 1 и 2 образуется дифференциальный вход усилителя.

Входы и выход ОУ обычно выполняют на нулевом уровне, т.е. в исходном состоянии, при отсутствии входного сигнала напряжения на входах и на выходе равны нулю. При подаче входного сигнала напряжение на выходе может как увеличиваться, так и уменьшаться. Для этого для питания ОУ используют, как правило, два разнополярных источника питания +UПи -UПпричём  |+UП|=|-UП|. Входное напряжение подают на один из входов, а на второй вход подают постоянный, например, нулевой потенциал или на оба входа подают два разных напряжения от двух раздельных источников (рис.64 а,б) . В обоих случаях на дифференциальном входе ОУ действует дифференциальный входной сигнал UВХ=UВХ2 - UВХ1. Этот сигнал может быть получен и от одного источника с незаземлённым выходом (рис. 64в).

Рис. 64. Схемы подачи входного сигнала на входы ОУ

Если входные напряжения UВХ1 и UВХ2 одинаковы и у них совпадают амплитуды и фазы, то их называют синфазными входными напряжениями или синфазным сигналом UВХ.СХ.. При подаче синфазного сигнала входы I и 2 фактически являются объединёнными, и на них подаётся напряжение UВХ.СФ от общего источника (рис.65). Синфазные сигналы являются вредными и возникают в результате внешних наводок на цепи ОУ, при колебаниях напряжений питания, окружающей температуры и т.д., поэтому синфазные сигналы иногда называют синфазными помехами.

Рис. 65. Схема подачи синфазного сигнала

Общая структурная схема ОУ показана на рис.66. Для ОУ являются обязательными два, а иногда три, каскада усиления,  которые  обеспечивают большой  коэффициент усиления, каскад смещения или сдвига уровня, который обеспечивает на выходе нулевой потенциал при отсутствии входного сигнала, и выходной каскад, обеспечивающий малое выходное сопротивление ОУ. Кроме этих, общих для всех ОУ, функциональных узлов в конкретных типах ОУ дополнительно применяют входные и междукаскадные эмиттерные повторители, цепи защиты входа ОУ от перенапряжений и выхода ОУ от короткого замыкания, а также цепи внутренней коррекции частотной характеристики ОУ.

 Рис. 66.Структурная схема операционного усилителя

В первом каскаде усиления применяют балансный УПТ с симметричным дифференциальным входом. Для увеличения входного сопротивления ОУ в первом каскаде используются составные транзисторы и режимы малых коллекторных и базовых токов. В некоторых ОУ для увеличения входного сопротивления применяют дополнительные входные каскады - эмиттерные повторители на биполярных транзисторах и истоковые повторители на полевых униполярных транзисторах. В качестве второго каскада усиления используют или балансный УПТ с несимметричным выходом или реостатный усилитель. Простейшим выходным каскадом ОУ является эмиттерный повторитель, работающий в линейном режиме.

При использовании в электронных устройствах ОУ почти всегда охвачен обратной связью. Именно в совокупности с цепями обратных связей ОУ образует определённый функциональный узел и выполняет заданные операции, поэтому необходимо различать параметры собственно ОУ, как отдельного элемента, и параметры узлов, выполненных на базе ОУ. На высоких частотах образуется фазовый сдвиг между выходным и входным напряжениями, дополнительный к заданному изменению фазы на 180°. Суммарный сдвиг фаз может достигнуть в усилителе с обратной связью 360°, обратная связь станет положительной, и при достаточно большом коэффициенте усиления ОУ может самовозбудиться. В связи с этим в ОУ предусматривают цепи коррекции частотной характеристики. Эти цепи создают ООС, которая уменьшает коэффициент усиления на высоких частотах. В большинстве ОУ предусмотрена внешняя коррекция при помощи внешних навесных элементов - резисторов и конденсаторов.  В некоторых ОУ коррекция выполнена внутри интегральной микросхемы. Во всех случаях при расширении полосы пропускания ОУ уменьшают его коэффициент усиления и, наоборот, при необходимости увеличить усиление сужают полосу.





    Система параметров  характеризующих операционный усилитель.

Помимо приведенных выше общих для усилителей любого типа включает в себя ряд специфических
показателей, к ним относятся:

  •  Uсм-напряжение смещения (1-10мВ) – приведенное ко входу напряжение, необходимое для смещения амплитудной характеристики в начало координат, т.е.приведения к нулю выходного напряжения ОУ при отсутствии входных сигналов в нормальных климатических условиях, напряжение смещения подаётся на один из входов ОУ или на специальный вход при настройке схемы ,
  •  m= Δ Uсм/0С – температурный коэффициент напряжения смещения (10-50 мкВ/0С),
  •  Iвх = (Iвх1+Iвх2)/2 – входной ток ОУ, определяемый как полусумма входных токов каждого входа (10-200 нА),
  •  Δ Iвх= (Iвх1-Iвх2) –ток сдвига (1-100нА),
  •  n= Δ Δ Iвх/0С – температурный коэффициент тока сдвига (0,1-10 нА/0С),
  •  Ксф =Uвых.сф./Uвх.сф. –коэффициент передачи синфазного сигнала (1-10),
  •  Ксф.ос.=20lgК/Ксф (50-80 дб) –коэффициент ослабления синфазного сигнала, здесь К – собственный коэффициент усиления ОУ,
  •  V(10-50 В/мкс) – скорость нарастания напряжения на выходе ОУ при подаче на его вход прямоугольного импульса напряжения,
  •  ƒгр.-граничная частота полосы пропускания при которой Коу падает до 0,7 своего значения при нулевой частоте входного сигнала (10 –50 КГц)
  •  F1 – частота единичного усиления (1-10 МГц) при которой Коу уменьшается до1.

Параметры ƒгр., F1 позволяют определить реальную величину Коу на заданной частоте входного сигнала.

Примечание: в скобках указан примерный диапазон параметров, характерный для современных  ОУ различных типов. Кроме того. нормируются также предельно допустимые величины напряжений питания ОУ, входных дифференциального и синфазного напряжений.

В настоящее время используют несколько десятков различных функциональных узлов, выполненных на базе ОУ.

На рис. 67 показан инвертирующий усилитель. В исходном состоянии напряжение на входе и выходе усилителя равны нулю. Внешние резисторы R1, R2 образуют цепь ООС, резистор R3 используют для компенсации влияния входных токов ОУ, являющихся одной из причин дрейфа выходного напряжения (механизм этого влияния будет рассмотрен ниже).

 Рис. 67. Инвертирующий усилитель.

анализе схем с ОУ  используется понятие «идеальный ОУ», у которого К=¥ , RВХ, RВЫХ=0. Эти приближения позволяют сформулировать два правила для идеального ОУ: Uвх.дф.= Uвых/=0 (т.наз. эквипотенциальный нуль,  когда потенциалы инвертирующего и неинвертирующего входов  одинаковы, но сопротивление между ними очень велико) и Iвх = Uвх.дф/RВХ = Uвх.дф/¥ =0 ( ОУ по входам тока не потребляет).Эти правила существенно облегчают расчеты при приемлемом уровне погрешности, которая тем меньше, чем ближе параметры реального ОУ к идеальным, что имеет место у современных интегральных ОУ. Пользуясь указанными приближениями и основными выводами теории обратной связи , можно записать вместо очевидного соотношения  i1 = iос + iвх  уравнение i1≈ iос  , т.к. RВХ и iвх = 0, тогда получим напряжение обратной связи  и коэффициент обратной связи в виде:

;                               

Далее можно условно считать, что  Rвх.ос. = Uвх/ i1 = R1, (т.к. Uвх.дф.=0), т.е. входное сопротивление схемы относительно невелико, что является особенностью инвертирующего ОУ. Внешний коэффициент усиления  Квнеш. (применяется также обозначение Кос) найдем из следующих очевидных для идеального ОУ соотношений:

i1 = Uвх/R1 ; iос= Uвых./R2; i1 = iос= Uвх/R1= Uвых./R2 и Квнеш.=  Uвых./ Uвх = -  R2/ R1 

(знак «-»  отражает инвертирующие свойства данной схемы, в расчётах обычно не используется ). Выходное сопротивление схемы приблизительно равно Rвых.ос.=Rвых.ОУ/2. Указанным способом можно получить вполне приемлемые для инженерных расчётов основные параметры схемы усилителя, имея ввиду, что допущенные погрешности будут скомпенсированы на этапе наладки при практической реализации  схемы.

Если R1=R2, то Kос=-1 , т.е. этот усилитель будет выполнять роль инвертора - устройства, изменяющего только знак вxoдного сигнала без изменения его величины.

На рис.68  показан неинвертирующий  усилитель. Здесь входной сигнал подают на неинвертирующий вход ОУ, сигнал на выходе имеет тот же знак. Так как в ОУ с ООС потенциалы входов VА=VБ , то на входе «б» при действии входного сигнала: UБ=UВХ.. Следовательно можно считать, что

,

откуда

.

Входное сопротивление :

RВХ.ос » RВХ.ОУ т.е. оно гораздо больше, чем у инвертирующего усилителя. Выходное сопротивление R ВЫХ.ос»R ВЫХ./2.

Рис.68   Неинвертирующий  усилитель.

На рис.69  показан повторитель сигнала - функциональный узел, в котором входной и выходной сигналы одинаковы по знаку и по величине. Коэффициент усиления повторителя Кос=1. 0н получается из формулы для предыдущей схемы, если учесть, что R2=0, R1. Входное сопротивление RВХ.ПОВТ. »RВХ.ОУ×К, т.е. очень большое. Выходное сопротивление RВЫХ.ПОВТ » RВЫХ.ОУ/К »0. Такие параметры делают повторитель удобным каскадом согласования высокоомного источника сигнала и низкоомной нагрузки.

Рис.69
Повторитель
на базе ОУ

На рис.70  показан двухвходовой инвертирующий сумматор. Здесь резисторы R1.1, R1.2 служат совместно с R2 для образования ООС. Кроме того, резисторы R1  служат для взаимной развязки друг от друга источников сигналов. При R1=R2, КОС=-1 и UВЫХ=-(UВХ1+UВХ2). Для каждого источника входное сопротивление сумматора RВХ.СУМ » R1;  выходное сопротивление RВЫХ.СУМ ≈RВЫХ /2.

Рис.70 Инвертирующий сумматор

На рис.71 показан интегратор. В цепъ ООС вместо R2 включён конденсатор С. Так как для «идеального ОУ» i1= 2,i1= -UВХ /R1,, то . Входное сопротивление при этом RВХ = R1,  а выходное сопротивление RВЫХ.ИНТ. »RВЫХ.ОУ.

Рис.71 Интегратор

В частном случае, когда на вход интегратора подается импульс постоянного напряжения Uвх = Uм длительностью tи, на выходе образуется линейно изменяющееся напряжение:
Uвых = Uм*tи/t, где t = RC – постоянная времени цепи обратной связи.
Интегратор, работающий в указанном режиме часто используется в генераторах линейно изменяющегося напряжения (ГЛИН), а также в  схемах формирования пилообразного напряжения развертки.

На рис.72  показан компаратор, который служит для определения момента равенства двух напряжений. Здесь входное синусоидальное напряжение сравнивается с нулевым потенциалом. ОУ использован без обратной связи, что является особенностью данной схемы. Напряжение на выходе принимает два крайних значения ±UНАС, где UНАС - напряжение насыщения ОУ (максимально возможное напряжение на выходе, обычно ниже напряжения питания на 1-2В). При положительном входном сигнале напряжение на выходе отрицательное. При переходе входного напряжения через нуль выходное напряжение меняет знак.

Рис. 72  Компаратор

Широкое применение в измерительной технике находят так называемые активные фильтры на базе ОУ. Термин «активный» объясняется включением в схему RC-фильтра активного элемента – в данном случае ОУ. Смысл такого включения заключается в компенсации потерь на пассивных элементах фильтра с целью получения высокой равномерности коэффициента передачи в полосе пропускания и большой крутизны спада передаточной характеристики. Теория активных фильтров в настоящее время хорошо разработана, методика их расчетов доведена до таблиц и номограмм. Основная задача при этом сводится к аппроксимации передаточной характеристики полиномами Чебышева, Бесселя и др. Выбор коэффициентов этих полиномов, а, следовательно, и параметров элементов схемы фильтра, обеспечивает наилучшее в том или ином смысле приближение к желаемым амплитудно-частотным характеристикам.

В качестве примера на рисунке 73 приведен двухполюсный (по числу конденсаторов) фильтр нижних частот (пропускает на выход сигнал  в диапазоне частот от нуля до частоты среза).

Рис. 73  Активный НЧ фильтр

Здесь KОС - коэффициент усиления ОУ, охваченного отрицательной обратной связью (элементы R и (KОС-1)×R). ОУ в неинвертирующем включении обеспечивает относительно плоскую передаточную характеристику в полосе пропускания и крутой спад на частоте среза при соответствующем выборе R, R1, R2, C1, C2. Последовательное соединение подобных схем (многополюсные фильтры) позволяет добиться необходимой формы передаточной характеристики.

Измерительный усилитель тока используется для измерения малых токов без внесения искажений в цепь за счет внутреннего сопротивления обычного микроамперметра. Схема такого усилителя показана на рис.74

Рис. 74 Схема измерения малых токов на базе ОУ

Источник измеряемого тока показан в виде эквивалентной схемы, содержащей источник ЭДС  еВХ с внутренним сопротивлением RU,  которая выполняет роль резистора R1 в обычной схеме инвертирующего усилителя (рис.67). Нетрудно показать, что в этом случае UВЫХ = -R2IВХ, что легко выполнимо для ОУ, имеющего большой собственный (внутренний) коэффициент усиления. По этой же причине входное сопротивление схемы весьма мало и не оказывает влияния на величину измеряемого тока. Заменив в схеме (рис.74) резистор R2 на конденсатор, получим интегратор входного тока (усилитель электрического заряда), удобный, например, для усиления сигналов пьезоэлектрических датчиков. В этом случае существенно снижается погрешность измерения по сравнению с обычной схемой усиления напряжения пьезоэлектрического датчика.

Свойство усилителя на базе ОУ поддерживать ток в цепи обратной связи равным току во входной цепи используется для прецизионных преобразователей сопротивления в напряжение (ПСН), особенно если резистивный датчик (обычно тензодатчик) находится на значительном удалении от измерительной части схемы. Принцип работы простейшего  ПСН показан на рис.75.

        

 Рис.75

Простейший ПСН

Rх,Rо –измеряемое и образцовое  сопртивления,                                                                          

r1,r2– сопротивления проводов длинной линии,                                                                                                                                                                                                                                       
Uо – источник образцового напряжения.

Из вышеизложенного следует: Uвых.= -А*Rх при условии r1 = r2 =0, где А = Uо/Rо = =Const., реально Uвых.= Uо/Rо*( Rх + r1 + r2 ), т.е. вносится погрешность влияния сопротивления проводов соединительной линии. Существенно уменьшить эту погрешность можно используя трёхпроводную линию как показано на рис.76.

Рис.76 ПСН с трёхпроводной линией.

r3 – сопротивление третьего провода

В этом случае третий провод передаёт лишь потенциал на инвертирующий вход ОУ, поскольку его сопротивление  исчезающе мало по сравнению с входным сопротивлением ОУ, сопротивление  r2  обычно много меньше образцового Rо и также перестаёт существенно влиять на погрешность, кроме того справедливо и соотношение r1«Rх. При этих практически реальных условиях можно показать, что: 

 

если  при этом  выполняется  соотношение     

 ,то результат измерения  сопротивления будет близок к идеальному.  

                                 Дифференциа́льный усили́тель 

Дифференциа́льный усили́тель — электронный усилитель с двумя входами, выходной сигнал которого равен разности входных напряжений, умноженной на константу. Применяется в случаях, когда необходимо выделить небольшую разность напряжений на фоне значительной синфазной составляющей.


Схема дифференциального усилителя на базе электронного моста с n-p-n биполярными транзисторами

Выходной сигнал дифференциального усилителя может быть как однофазным, так и дифференциальным. Это определяется схемотехникой выходного каскада.

Транзисторы дифференциального усилителя могут быть биполярными, полевыми или баллистическими. Наиболее высокочастотными (ТГц диапазон) являются дифференциальные усилители на интегральной паре баллистических транзисторов.

Инструментальный дифференциальный усилитель



Схема инструментального дифференциального усилителя на базе ОУ

Для предварительного усиления слабого дифференциального сигнала в высокоточных системах от усилителя требуются высокие параметры точности коэффициента усиления, и во многих случаях также большое входное сопротивление. Точность коэффициента усиления обычно обеспечивают применением глубокой отрицательной обратной связи, охватывая ею операционный усилитель. Однако дифференциальный усилитель на базе одного операционного усилителя не обеспечивает высокого входного сопротивления порядка нескольких мегаом, поэтому зачастую применяют сборку, аналогичную изображённой на схеме. Здесь входное дифференциальное напряжение (V2-V1) подаётся на неинвертирующий вход операционного усилителя, который не используется для создания обратной связи, а собственное входное сопротивление прецизионных операционных усилителей составляет значения порядка нескольких сотен мегаом. Инструментальные дифференциальные усилители применяются для точного съёма напряжений с плеч электронного моста и других датчиков с малым выходным импедансом. Промышленностью выпускаются микросхемы, подобные приведённой схеме, с дополнительными возможностями по настройке коэффициента усиления, фильтрации шумов и частотной коррекции.

Применение



Схема дифференциального усилителя на базе одного ОУ

Дифференциальный усилитель необходим в случаях, когда информацию несёт не абсолютное значение напряжения в некоторой точке (относительно уровня заземления), а разность напряжений между двумя точками. Характерным примером является резистивный датчик тока, включенный последовательно с исследуемой цепью.

Следует использовать дифференциальные усилители всегда, когда возможно наличие синфазных помех в сигнале. Например, при измерении электрических потенциалов, снимаемых с определённых точек живого организма: при снятии электрокардиограммы, электроэнцефалографии и подобных методах исследования. Обычно необходимо также использовать специальные линии передачи сигналов, например, экранированную двухпроводную линию для передачи сигнала с микрофона (применяется, например, в линиях с разъёмом XLR).

  •  С 1960-х годов дифференциальный усилитель применяется в цифровых микросхемах с эмиттерно-связанной логикой (ЭСЛ).
  •  Дифференциальный усилитель применяется в эмиттерно-связанных триггерах Шмитта.
  •  Аналоговые умножители, Ячейка Гилберта

                                     Биполярный транзистор



Обозначение биполярных транзисторов на схемах



Простейшая наглядная схема устройства транзистора

Биполя́рный транзи́стор — трёхэлектродный полупроводниковый прибор, один из типов транзистора. Электроды подключены к трём последовательно расположенным слоям полупроводника с чередующимся типом примесной проводимости. По этому способу чередования различают n-p-n и p-n-p транзисторы (n (negative) — электронный тип примесной проводимости, p (positive) — дырочный).

Работа биполярного транзистора, в отличие от полевого транзистора, основана на переносе зарядов одновременно двух типов, носителями которых являются электроны и дырки (от слова «би» — «два»). Схематическое устройство транзистора показано на втором рисунке.

Электрод, подключённый к среднему слою называют базой, электроды, подключённые ко внешним слоям, называют коллектором и эмиттером. С точки зрения типов проводимостей эмиттерный и коллекторный слои не различимы. Но практически, при изготовлении транзисторов, для улучшения электрических параметров прибора они существенно различаются степенью легирования примесями. Эмиттерный слой сильно легированный, коллекторный легируется слабо, что обеспечивает повышение допустимого коллекторного напряжения. Величина пробойного обратного напряжения эмиттерного перехода некритична, так как обычно в электронных схемах транзисторы работают с прямосмещенным эмиттерным P-n-переходом, кроме того, сильное легирование эмиттерного слоя обеспечивает лучшую инжекцию неосновных носителей в базовый слой, что увеличивает коэффициент передачи по току в схемах с общей базой. Кроме того, площадь коллекторного P-n-перехода при изготовлении делается существенно больше площади эмиттерного перехода, что обеспечивает лучший сбор неосновных носителей из базового слоя и улучшает коэффициент передачи.

Для повышения быстродействия (частотных параметров) биполярного транзистора толщину базового слоя нужно делать тоньше, так как толщиной базового слоя, в том числе, определяется время "пролета" (диффузии в бездрейфовых приборах) неосновных носителей, но, при снижении толщины базы, снижается предельное коллекторное напряжение, поэтому толщину базового слоя выбирают исходя из разумного компромисса.

Устройство и принцип действия



Упрощенная схема поперечного разреза планарного биполярного n-p-n транзистора.

В первых транзисторах в качестве полупроводникового материала использовался металлический германий. В настоящее (2015 г.) время их изготавливают в основном из монокристаллического кремния и монокристаллического арсенида галлия. Благодаря очень высокой подвижности носителей в арсениде галлия приборы на его основе обладают высоким быстродействием и используются в сверхбыстродействующих логических схемах и в схемах СВЧ-усилителей.

Биполярный транзистор состоит из трёх различным образом легированных полупроводниковых слоёв: эмиттера E (Э), базы B (Б) и коллектора C (К). В зависимости от чередования типа проводимости этих слоёв различают n-p-n (эмиттер − n-полупроводник, база − p-полупроводник, коллектор − n-полупроводник) и p-n-p транзисторы. К каждому из слоёв подключены проводящие невыпрямляющие контакты.

Слой базы расположен между эмиттерным и коллекторным слоями и слаболегирован, поэтому имеет большое омическое сопротивление. Общая площадь контакта база-эмиттер выполняется значительно меньше площади контакта коллектор-база (это делается по двум причинам — большая площадь перехода коллектор-база увеличивает вероятность захвата неосновных носителей заряда из базы в коллектор и, так как в рабочем режиме переход коллектор-база обычно включен с обратным смещением, при работе в коллекторном переходе выделяется основная доля тепла, рассеиваемого прибором, повышение площади способствует лучшему отводу тепла от коллекторного перехода), поэтому реальный биполярный транзистор общего применения является несимметричным устройством (технически нецелесообразно менять местами эмиттер и коллектор и получить в результате аналогичный исходному биполярный транзистор — инверсное включение).

В активном усилительном режиме работы транзистор включён так, что его эмиттерный переход смещён в прямом направлении (открыт), а коллекторный переход смещён в обратном направлении (закрыт).

Для определённости рассмотрим работу n-p-n транзистора, все рассуждения повторяются абсолютно аналогично для случая p-n-p транзистора, с заменой слова «электроны» на «дырки», и наоборот, а также с заменой всех напряжений на противоположные по знаку. В n-p-n транзисторе электроны, основные носители заряда в эмиттере, проходят через открытый переход эмиттер-база (инжектируются) в область базы. Часть этих электронов рекомбинирует с основными носителями заряда в базе (дырками). Однако, из-за того что базу делают очень тонкой и сравнительно слабо легированной, бо́льшая часть электронов, инжектированных из эмиттера, диффундирует в область коллектора, так как время рекомбинации относительно велико. Сильное электрическое поле обратно смещённого коллекторного перехода захватывает неосновные носители из базы (электроны), и переносит их в коллекторный слой. Ток коллектора, таким образом, практически равен току эмиттера, за исключением небольшой потери на рекомбинацию в базе, которая и образует ток базы (Iэ=Iб + Iк). Коэффициент α, связывающий ток эмиттера и ток коллектора (Iк = α Iэ) называется коэффициентом передачи тока эмиттера. Численное значение коэффициента α 0,9—0,999. Чем больше коэффициент, тем эффективней транзистор передаёт ток. Этот коэффициент мало зависит от напряжения коллектор-база и база-эмиттер. Поэтому в широком диапазоне рабочих напряжений ток коллектора пропорционален току базы, коэффициент пропорциональности равен β = α/(1 − α), от 10 до 1000. Таким образом, малым током базы можно управлять значительно бо́льшим током коллектора.

Режимы работы биполярного транзистора

Нормальный активный режим

Переход эмиттер-база включен в прямом направлении (открыт), а переход коллектор-база — в обратном (закрыт)
UЭБ>0; UКБ<0 (для транзистора p-n-p типа), для транзистора n-p-n типа условие будет иметь вид UЭБ<0;UКБ>0.

Инверсный активный режим

Эмиттерный переход имеет обратное включение, а коллекторный переход — прямое.

Режим насыщения

Оба p-n перехода смещены в прямом направлении (оба открыты). Если эмиттерный и коллекторный р-n-переходы подключить к внешним источникам в прямом направлении, транзистор будет находиться в режиме насыщения. Диффузионное электрическое поле эмиттерного и коллекторного переходов будет частично ослабляться электрическим полем, создаваемым внешними источниками Uэб и Uкб. В результате уменьшится потенциальный барьер, ограничивавший диффузию основных носителей заряда, и начнется проникновение (инжекция) дырок из эмиттера и коллектора в базу, то есть через эмиттер и коллектор транзистора потекут токи, называемые токами насыщения эмиттера (IЭ.нас) и коллектора (IК.нас).

Напряжение насыщения коллектор-эмиттер (UКЭ.нас) - это падение напряжения на открытом транзисторе (смысловой аналог RСИ.отк у полевых транзисторов). Аналогично напряжение насыщения база-эмиттер (UБЭ.нас) - это падение напряжение между базой и эмиттером на открытом транзисторе.

Режим отсечки

В данном режиме коллекторный p-n переход смещён в обратном направлении, а на эмиттерный переход может быть подано как обратное, так и прямое смещение, не превышающее порогового значения, при котором начинается эмиссия неосновных носителей заряда в область базы из эмиттера (для кремниевых транзисторов приблизительно 0,6—0,7 В). Режим отсечки соответствует условию UЭБ<0,7 В, или IБ=0.

Барьерный режим

В данном режиме база транзистора по постоянному току соединена накоротко или через небольшой резистор с его коллектором, а в коллекторную или в эмиттерную цепь транзистора включается резистор, задающий ток через транзистор. В таком включении транзистор представляет из себя своеобразный диод, включенный последовательно с токозадающим резистором. Подобные схемы каскадов отличаются малым количеством комплектующих, хорошей развязкой по высокой частоте, большим рабочим диапазоном температур, нечувствительностью к параметрам транзисторов.

Схемы включения

Любая схема включения транзистора характеризуется двумя основными показателями:

  •  Коэффициент усиления по току Iвых/Iвх.
  •  Входное сопротивление Rвх = Uвх/Iвх.

Схема включения с общей базой

Усилитель с общей базой. 

  •  Среди всех трех конфигураций обладает наименьшим входным и наибольшим выходным сопротивлением. Имеет коэффициент усиления по току, близкий к единице, и большой коэффициент усиления по напряжению. Фаза сигнала не инвертируется.
  •  Коэффициент усиления по току: Iвых/Iвх = Iк/Iэ = α [α<1].
  •  Входное сопротивление Rвх = Uвх/Iвх = Uэб/Iэ.

Входное сопротивление для схемы с общей базой мало и не превышает 100 Ом для маломощных транзисторов, так как входная цепь транзистора при этом представляет собой открытый эмиттерный переход транзистора.

Достоинства

  •  Хорошие температурные и частотные свойства.
  •  Высокое допустимое напряжение

Недостатки схемы с общей базой

  •  Малое усиление по току, так как α < 1
  •  Малое входное сопротивление
  •  Два разных источника напряжения для питания.

Схема включения с общим эмиттером



Iвых = Iк
Iвх = Iб
Uвх = Uбэ
Uвых = Uкэ

  •  Коэффициент усиления по току: Iвых/Iвх = Iк/Iб = Iк/(Iэ-Iк) = α/(1-α) = β [β>>1].
  •  Входное сопротивление: Rвх = Uвх/Iвх = Uбэ/Iб.

Достоинства

  •  Большой коэффициент усиления по току.
  •  Большой коэффициент усиления по напряжению.
  •  Наибольшее усиление мощности.
  •  Можно обойтись одним источником питания.
  •  Выходное переменное напряжение инвертируется относительно входного.

Недостатки

  •  Худшие температурные и частотные свойства по сравнению со схемой с общей базой.

Схема с общим коллектором



Iвых = Iэ
Iвх = Iб
Uвх = Uбк
Uвых = Uкэ

  •  Коэффициент усиления по току: Iвых/Iвх = Iэ/Iб = Iэ/(Iэ-Iк) = 1/(1-α) = β [β>>1].
  •  Входное сопротивление: Rвх = Uвх/Iвх = (Uбэ + Uкэ)/Iб.

Достоинства

  •  Большое входное сопротивление.
  •  Малое выходное сопротивление.

Недостатки

  •  Коэффициент усиления по напряжению меньше 1.

Схему с таким включением называют «эмиттерным повторителем».

Основные параметры

  •  Коэффициент передачи по току.
  •  Входное сопротивление.
  •  Выходная проводимость.
  •  Обратный ток коллектор-эмиттер.
  •  Время включения.
  •  Предельная частота коэффициента передачи тока базы.
  •  Обратный ток коллектора.
  •  Максимально допустимый ток.
  •  Граничная частота коэффициента передачи тока в схеме с общим эмиттером.

Параметры транзистора делятся на собственные (первичные) и вторичные. Собственные параметры характеризуют свойства транзистора, независимо от схемы его включения. В качестве основных собственных параметров принимают:

  •  коэффициент усиления по току α;
  •  сопротивления эмиттера, коллектора и базы переменному току rэ, rк, rб, которые представляют собой:
    •  rэ — сумму сопротивлений эмиттерной области и эмиттерного перехода;
    •  rк — сумму сопротивлений коллекторной области и коллекторного перехода;
    •  rб — поперечное сопротивление базы.



Эквивалентная схема биполярного транзистора с использованием h-параметров

Вторичные параметры различны для различных схем включения транзистора и, вследствие его нелинейности, справедливы только для низких частот и малых амплитуд сигналов. Для вторичных параметров предложено несколько систем параметров и соответствующих им эквивалентных схем. Основными считаются смешанные (гибридные) параметры, обозначаемые буквой «h».

Входное сопротивление — сопротивление транзистора входному переменному току при коротком замыкании на выходе. Изменение входного тока является результатом изменения входного напряжения, без влияния обратной связи от выходного напряжения.

h11 = Um1/Im1, при Um2 = 0.

Коэффициент обратной связи по напряжению показывает, какая доля выходного переменного напряжения передаётся на вход транзистора вследствие обратной связи в нём. Во входной цепи транзистора нет переменного тока, и изменение напряжения на входе происходит только в результате изменения выходного напряжения.

h12 = Um1/Um2, при Im1 = 0.

Коэффициент передачи тока (коэффициент усиления по току) показывает усиление переменного тока при нулевом сопротивлении нагрузки. Выходной ток зависит только от входного тока без влияния выходного напряжения.

h21 = Im2/Im1, при Um2 = 0.

Выходная проводимость — внутренняя проводимость для переменного тока между выходными зажимами. Выходной ток изменяется под влиянием выходного напряжения.

h22 = Im2/Um2, при Im1 = 0.

Зависимость между переменными токами и напряжениями транзистора выражается уравнениями:

Um1 = h11Im1 + h12Um2;

Im2 = h21Im1 + h22Um2.

В зависимости от схемы включения транзистора к цифровым индексам h-параметров добавляются буквы: «э» — для схемы ОЭ, «б» — для схемы ОБ, «к» — для схемы ОК.

Для схемы ОЭ: Im1 = I, Im2 = I, Um1 = Umб-э, Um2 = Umк-э. Например, для данной схемы:

h21э = I/I = β.

Для схемы ОБ: Im1 = I, Im2 = I, Um1 = Umэ-б, Um2 = Umк-б.

Собственные параметры транзистора связаны с h-параметрами, например для схемы ОЭ: ;

;

;

.

С повышением частоты вредное влияние на работу транзистора начинает оказывать ёмкость коллекторного перехода Cк. Сопротивление ёмкости уменьшается, снижается ток через сопротивление нагрузки и, следовательно, коэффициенты усиления α и β. Сопротивление ёмкости эмиттерного перехода Cэ также снижается, однако она шунтируется малым сопротивлением перехода rэ и в большинстве случаев может не учитываться. Кроме того, при повышении частоты происходит дополнительное снижение коэффициента β в результате отставания фазы тока коллектора от фазы тока эмиттера, которое вызвано инерционностью процесса перемещения носителей через базу от эммитерного перехода к коллекторному и инерционностью процессов накопления и рассасывания заряда в базе. Частоты, на которых происходит снижение коэффициентов α и β на 3 дБ, называются граничными частотами коэффициента передачи тока для схем ОБ и ОЭ соответственно.

В импульсном режиме импульс тока коллектора начинается с запаздыванием на время задержки τз относительно импульса входного тока, что вызвано конечным временем пробега носителей через базу. По мере накопления носителей в базе ток коллектора нарастает в течение длительности фронта τф. Временем включения транзистора называется τвкл = τз + τф.

Применение транзисторов

  •  Усилители, каскады усиления
  •  Генератор сигналов
  •  Модулятор
  •  Демодулятор (Детектор)
  •  Инвертор 
  •  Микросхемы на транзисторной логике

                                              Полевой транзистор



Мощный полевой транзистор с каналом N-типа

Полевой транзистор — полупроводниковый прибор, через который протекает поток основных носителей зарядов, регулируемый поперечным электрическим полем, которое создаётся напряжением, приложенным между затвором и стоком или между затвором и истоком.

Так как принцип действия полевых транзисторов основан на перемещении основных носителей заряда одного типа (электронами или дырками), такие приборы ещё называют униполярными, тем самым противопоставляя их биполярным.

Классификация полевых транзисторов



Виды полевых транзисторов и их обозначение на принципиальных схемах

Полевые транзисторы классифицируют на приборы с управляющим p-n-переходом и с изолированным затвором, так называемые МДП («металл-диэлектрик-полупроводник»)-транзисторы, которые также называют МОП («металл-оксид-полупроводник»)-транзисторами, причём последние подразделяют на транзисторы со встроенным каналом и приборы с индуцированным каналом.

К основным параметрам полевых транзисторов причисляют: входное сопротивление, внутреннее сопротивление транзистора, также называемое выходным, крутизну стокозатворной характеристики, напряжение отсечки и некоторые другие.

Транзисторы с управляющим p-n-переходом

Рис. 1. Устройство полевого транзистора с управляющим p-n-переходом

Полевой транзистор с управляющим p-n-переходом[2] — это полевой транзистор, в котором пластина из полупроводника, например n-типа (Рис. 1), имеет на противоположенных концах электроды (сток и исток), с помощью которых она включена в управляемую цепь. Управляющая цепь подключается к третьему электроду (затвору) и образуется областью с другим типом проводимости, в данном случае p-типом.

Источник питания, включенный во входную цепь, создаёт на единственном p-n-переходе обратное напряжение. Во входную цепь также включается и источник усиливаемых колебаний. При изменении входного напряжения изменяется обратное напряжение на p-n-переходе, в связи с чем меняется толщина обедненного слоя (n-канал), то есть площадь поперечного сечения области, через которую проходит поток основных носителей заряда. Эта область называется каналом.

Электроды полевого транзистора имеют следующие названия:

  •  исток — электрод, из которого в канал входят основные носители заряда;
  •  сток — электрод, через который из канала уходят основные носители заряда;
  •  затвор — электрод, служащий для регулирования поперечного сечения канала.

Проводимость канала может быть как n-, так и p-типа. Поэтому по типу проводимости канала различают полевые транзисторы с n-каналом и р-каналом. Полярность напряжений смещения, подаваемых на электроды транзисторов с n- и с p-каналом, противоположны.

Управление током и напряжением на нагрузке, включённой последовательно к каналу полевого транзистора и источнику питания, осуществляется изменением входного напряжения, в следствии чего изменяется обратное напряжение на p-n-переходе, что ведёт к изменению толщины запирающего (обеднённого) слоя. При некотором запирающем напряжении площадь поперечного сечения канала станет равной нулю и ток в канале транзистора станет весьма малым. В связи с незначительностью обратных токов p-n-перехода, мощность источника сигнала ничтожно мала.

Таким образом, полевой транзистор по принципу действия аналогичен вакуумному триоду. Исток в полевом транзисторе подобен катоду вакуумного триода, затвор — сетке, сток — аноду. При этом существуют и отличия, например:

  •  в транзисторе отсутствует катод, который требует подогрева;
  •  любую из функций истока и стока может выполнять любой из этих электродов;
  •  существуют полевые транзисторы как с n-каналом, так и с p-каналом, что используется при производстве комплементарных пар транзисторов.

От биполярного транзистора полевой транзистор отличается, во-первых, принципом действия: в биполярном транзисторе управление выходным сигналом производится входным током, а в полевом транзисторе — входным напряжением или электрическим полем. Во-вторых, полевые транзисторы имеют значительно большие входные сопротивления, что связано с обратным смещением p-n-перехода затвора в рассматриваемом типе полевых транзисторов. В-третьих, полевые транзисторы могут обладать низким уровнем шума (особенно на низких частотах), так как в полевых транзисторах не используется явление инжекции неосновных носителей заряда и канал полевого транзистора может быть отделён от поверхности полупроводникового кристалла. Процессы рекомбинации носителей в p-n-переходе и в базе биполярного транзистора, а также генерационно-рекомбинационные процессы на поверхности кристалла полупроводника сопровождаются возникновением низкочастотных шумов.

Транзисторы с изолированным затвором (МДП-транзисторы)

Рис. 2. Устройство полевого транзистора с изолированным затвором.
a) — с индуцированным каналом, b) — со встроенным каналом

МОП-структура

Полевой транзистор с изолированным затвором — это полевой транзистор, затвор которого отделён в электрическом отношении от канала слоем диэлектрика.

В кристалле полупроводника с относительно высоким удельным сопротивлением, который называют подложкой, созданы две сильно легированные области с противоположным относительно подложки типом проводимости. На эти области нанесены металлические электроды — исток и сток. Расстояние между сильно легированными областями истока и стока может быть меньше микрона. Поверхность кристалла полупроводника между истоком и стоком покрыта тонким слоем (порядка 0,1 мкм) диэлектрика. Так как исходным полупроводником для полевых транзисторов обычно является кремний, то в качестве диэлектрика используется слой двуокиси кремния SiO2, выращенный на поверхности кристалла кремния путём высокотемпературного окисления. На слой диэлектрика нанесён металлический электрод — затвор. Получается структура, состоящая из металла, диэлектрика и полупроводника. Поэтому полевые транзисторы с изолированным затвором часто называют МДП-транзисторами.

Входное сопротивление МДП-транзисторов может достигать 1010…1014 Ом (у полевых транзисторов с управляющим p-n-переходом 107…109), что является преимуществом при построении высокоточных устройств.

Существуют две разновидности МДП-транзисторов: с индуцированным каналом и со встроенным каналом.

В МДП-транзисторах с индуцированным каналом (рис. 2, а) проводящий канал между сильнолегированными областями истока и стока отсутствует и, следовательно, заметный ток стока появляется только при определённой полярности и при определённом значении напряжения на затворе относительно истока, которое называют пороговым напряжением (UЗИпор).

В МДП-транзисторах со встроенным каналом (рис. 2, б) у поверхности полупроводника под затвором при нулевом напряжении на затворе относительно истока существует инверсный слой — канал, который соединяет исток со стоком.

Изображённые на рис. 2 структуры полевых транзисторов с изолированным затвором имеют подложку с электропроводностью n-типа. Поэтому сильнолегированные области под истоком и стоком, а также индуцированный и встроенный канал имеют электропроводность p-типа. Если же аналогичные транзисторы созданы на подложке с электропроводностью p-типа, то канал у них будет иметь электропроводность n-типа.

МДП-транзисторы с индуцированным каналом

При напряжении на затворе относительно истока, равном нулю, и при наличии напряжения на стоке, — ток стока оказывается ничтожно малым. Он представляет собой обратный ток p-n-перехода между подложкой и сильнолегированной областью стока. При отрицательном потенциале на затворе (для структуры, показанной на рис. 2, а) в результате проникновения электрического поля через диэлектрический слой в полупроводник при малых напряжениях на затворе (меньших UЗИпор) у поверхности полупроводника под затвором возникает обеднённый основными носителями слой эффект поля и область объёмного заряда, состоящая из ионизированных нескомпенсированных примесных атомов. При напряжениях на затворе, больших UЗИпор, у поверхности полупроводника под затвором возникает инверсный слой, который и является каналом, соединяющим исток со стоком. Толщина и поперечное сечение канала будут изменяться с изменением напряжения на затворе, соответственно будет изменяться и ток стока, то есть ток в цепи нагрузки и относительно мощного источника питания. Так происходит управление током стока в полевом транзисторе с изолированным затвором и с индуцированным каналом.

В связи с тем, что затвор отделён от подложки диэлектрическим слоем, ток в цепи затвора ничтожно мал, мала и мощность, потребляемая от источника сигнала в цепи затвора и необходимая для управления относительно большим током стока. Таким образом, МДП-транзистор с индуцированным каналом может производить усиление электромагнитных колебаний по напряжению и по мощности.

Принцип усиления мощности в МДП-транзисторах можно рассматривать с точки зрения передачи носителями заряда энергии постоянного электрического поля (энергии источника питания в выходной цепи) переменному электрическому полю. В МДП-транзисторе до возникновения канала почти всё напряжение источника питания в цепи стока падало на полупроводнике между истоком и стоком, создавая относительно большую постоянную составляющую напряжённости электрического поля. Под действием напряжения на затворе в полупроводнике под затвором возникает канал, по которому от истока к стоку движутся носители заряда — дырки. Дырки, двигаясь по направлению постоянной составляющей электрического поля, разгоняются этим полем и их энергия увеличивается за счёт энергии источника питания, в цепи стока. Одновременно с возникновением канала и появлением в нём подвижных носителей заряда уменьшается напряжение на стоке, то есть мгновенное значение переменной составляющей электрического поля в канале направлено противоположно постоянной составляющей. Поэтому дырки тормозятся переменным электрическим полем, отдавая ему часть своей энергии.

МДП-транзисторы со встроенным каналом

Рис. 3. Выходные статические характеристики (a) и сток-затворная характеристика (b) МДП-транзистора со встроенным каналом.



В данной схеме в качестве нелинейного элемента используется МДП транзистор с изолированным затвором и индуцированным каналом.

В связи с наличием встроенного канала в таком МДП-транзисторе при нулевом напряжении на затворе (см. рис. 2, б) поперечное сечение и проводимость канала будут изменяться при изменении напряжения на затворе как отрицательной, так и положительной полярности. Таким образом, МДП-транзистор со встроенным каналом может работать в двух режимах: в режиме обогащения и в режиме обеднения канала носителями заряда. Эта особенность МДП-транзисторов со встроенным каналом отражается и на смещении выходных статических характеристик при изменении напряжения на затворе и его полярности (рис. 3).

Статические характеристики передачи (рис. 3, b) выходят из точки на оси абсцисс, соответствующей напряжению отсечки UЗИотс, то есть напряжению между затвором и истоком МДП-транзистора со встроенным каналом, работающего в режиме обеднения, при котором ток стока достигает заданного низкого значения.

Формулы расчёта в зависимости от напряжения UЗИ

1. Транзистор закрыт

Пороговое значение напряжения МДП транзистора

2. Параболический участок.

-удельная крутизна передаточной характеристики транзистора.

3. Дальнейшее увеличение приводит к переходу на пологий уровень.

 — Уравнение Ховстайна.

МДП-структуры специального назначения

В структурах типа металл-нитрид-оксид-полупроводник (МНОП) диэлектрик под затвором выполняется двухслойным: слой оксида SiO2 и толстый слой нитрида Si3N4. Между слоями образуются ловушки электронов, которые при подаче на затвор МНОП-структуры положительного напряжения (28..30 В) захватывают туннелирующие через тонкий слой SiO2 электроны. Образующиеся отрицательно заряженные ионы повышают пороговое напряжение, причём их заряд может храниться до нескольких лет при отсутствии питания, так как слой SiO2 предотвращает утечку заряда. При подаче на затвор большого отрицательного напряжения (28…30 В), накопленный заряд рассасывается, что существенно уменьшает пороговое напряжение.

Структуры типа металл-оксид-полупроводник (МОП) с плавающим затвором и лавинной инжекцией (ЛИЗМОП) имеют затвор, выполненный из поликристаллического кремния, изолированный от других частей структуры. Лавинный пробой p-n-перехода подложки и стока или истока, на которые подаётся высокое напряжение, позволяет электронам проникнуть через слой окисла на затвор, вследствие чего на нём появляется отрицательный заряд. Изолирующие свойства диэлектрика позволяют сохранять этот заряд десятки лет. Удаление электрического заряда с затвора осуществляется с помощью ионизирующего ультрафиолетового облучения кварцевыми лампами, при этом фототок позволяет электронам рекомбинировать с дырками.

В дальнейшем были разработаны структуры запоминающих полевых транзисторов с двойным затвором. Встроенный в диэлектрик затвор используется для хранения заряда, определяющего состояние прибора, а внешний (обычный) затвор, управляемый разнополярными импульсами для ввода или удаления заряда на встроенном (внутреннем) затворе. Так появились ячейки, а затем и микросхемы флэш-памяти, получившие в наши дни большую популярность и составившие заметную конкуренцию жестким дискам в компьютерах.

Для реализации сверхбольших интегральных схем (СБИС) были созданы сверхминиатюрные полевые микротранзисторы. Они делаются с применением нанотехнологий с геометрическим разрешением менее 100 нм. У таких приборов толщина подзатворного диэлектрика доходит до нескольких атомных слоев. Используются различные, в том числе трехзатворные структуры. Приборы работают в микромощном режиме. В современных микропроцессорах корпорации Intel число приборов составляет от десятков миллионов до 2 миллиардов. Новейшие полевые микротранзисторы выполняются на напряженном кремнии, имеют металлический затвор и используют новый запатентованный материал для подзатворного диэлектрика на основе соединений гафния.

В последние четверть века бурное развитие получили мощные полевые транзисторы, в основном МДП-типа. Они состоят из множества маломощных структур или из структур с разветвлённой конфигурацией затвора. Такие ВЧ и СВЧ приборы впервые были созданы в СССР специалистами НИИ «Пульсар» Бачуриным В. В. (кремниевые приборы) и Ваксембургом В. Я. (арсенид-галлиевые приборы) Исследование их импульсных свойств было выполнено научной школой проф. Дьяконова В. П. (Смоленский филиал МЭИ). Это открыло область разработки мощных ключевых (импульсных) полевых транзисторов со специальными структурами, имеющих высокие рабочие напряжения и токи (раздельно до 500—1000 В и 50-100 А). Такие приборы нередко управляются малыми (до 5 В) напряжениями, имеют малое сопротивление в открытом состоянии (до 0,01 Ом) у сильноточных приборов, высокую крутизну и малые (в единицы-десятки нс) времена переключения. У них отсутствует явление накопления носителей в структуре и явление насыщения, присущее биполярным транзисторам. Благодаря этому мощные полевые транзисторы успешно вытесняют мощные биполярные транзисторы в области силовой электроники малой и средней мощности.

За рубежом в последние десятилетия стремительно развивается технология транзисторов на высокоподвижных электронах (ТВПЭ), которые широко используются в СВЧ устройствах связи и радионаблюдения. На основе ТВПЭ создаются как гибридные, так и монолитные микроволновые интегральные схемы . В основе действия ТВПЭ лежит управление каналом с помощью двумерного электронного газа, область которого создаётся под контактом затвора благодаря применению гетероперехода и очень тонкого диэлектрического слоя — спейсера.

Области применения полевых транзисторов

КМОП-структуры строящиеся из комплементарной пары полевых транзисторов с каналами разного (p- и n-) типа широко используются в цифровых и аналоговых интегральных схемах.

За счёт того, что полевые транзисторы управляются полем (величиной напряжения приложенного к затвору), а не током, протекающим через базу (как в биполярных транзисторах), полевые транзисторы потребляют значительно меньше энергии, что особенно актуально в схемах ждущих и следящих устройств, а также в схемах малого потребления и энергосбережения (реализация спящих режимов).

Выдающиеся примеры устройств, построенных на полевых транзисторах, — наручные кварцевые часы и пульт дистанционного управления для телевизора. За счёт применения КМОП-структур эти устройства могут работать до нескольких лет от одного миниатюрного источника питания — батарейки или аккумулятора, потому что практически не потребляют энергии.

В настоящее время полевые транзисторы находят всё более широкое применение в различных радиоустройствах, где с успехом заменяют биполярные. Их применение в радиопередающих устройствах позволяет увеличить частоту несущего сигнала, обеспечивая такие устройства высокой помехоустойчивостью. Обладая низким сопротивлением в открытом состоянии, находят применение в оконечных каскадах усилителей мощности звуковых частот высокой верности (Hi-Fi), где с успехом заменяют биполярные транзисторы и электронные лампы. Биполярные транзисторы с изолированным затвором (IGBT) находят применение в устройствах большой мощности, например в устройствах плавного пуска, где успешно вытесняют тиристоры.

                                    Эмиттерный повторитель.



Эмиттерный повторитель на основе npn-транзистора



Используемая на практике схема усилителя на эмиттерном повторителе. Резисторы R1 и R2 задают начальный режим работы транзистора («смещение»), C1 и C2 устраняют постоянную составляющую входного и выходного сигналов

Эмиттерный повторитель — частный случай повторителей напряжения на основе биполярного транзистора. Характеризуется высоким усилением по току и коэффициентом передачи по напряжению, близким к единице. При этом входное сопротивление относительно велико (однако оно меньше, чем входное сопротивление истокового повторителя), а выходное — мало.

В эмиттерном повторителе используется схема включения транзистора с общим коллектором (ОК). То есть напряжение питания подаётся на коллектор, входной сигнал подаётся на базу, а выходной сигнал снимается с эмиттера. В результате чего образуется 100 % отрицательная обратная связь по напряжению, что позволяет значительно уменьшить нелинейные искажения, возникающие при работе. Следует также отметить, что фазы входного и выходного сигнала совпадают. Такая схема включения используется для построения входных усилителей, в случае если выходное сопротивление источника велико, и как буферный усилитель, а также в качестве выходных каскадов усилителей мощности.

I вх = I б

I вых = I э

U вх = U бэ + U Rэ

U вых = U Rэ

  •  Коэффициент усиления по току:

Iвых/Iвх = Iэ/Iб = Iэ/(Iэ-Iк) = 1/(1-α) = β  [β>>1]

  •  Коэффициент усиления по напряжению:

Uвых/Uвх = U/(Uбэ+U) < 1

  •  Входное сопротивление:

Rвх = Uвх/Iвх = (Uбэ+U)/Iб

  •  Выходное сопротивление:

Rвых = Uвых/Iвых = U/Iэ = Rэ

Достоинства:

  •  Большое входное сопротивление
  •  Малое выходное сопротивление

Недостатки:

  •  Коэффициент усиления по напряжению меньше 1.


                                

Список Литературы.
http://kursach37.com/uch_elektr_t8.html
https://ru.wikipedia.org/wiki/Дифференциальный_усилитель
https://ru.wikipedia.org/wiki/Биполярный_транзистор
http://www.moluch.ru/conf/tech/archive/6/1217/
https://ru.wikipedia.org/wiki/Эмиттерный_повторитель


Подольск 2014

PAGE  0

Г.Подольск
2015 г.


 

А также другие работы, которые могут Вас заинтересовать

58447. ПОДБОР И РАСЧЕТ ОСНОВНЫХЭЛЕМЕНТОВ ОДНОСТУПЕНЧАТОЙ ПАРОКОМПРЕССИОННОЙ ХОЛОДИЛЬНОЙ МАШИНЫ 237.93 KB
  Проведем тепловой, конструктивный и гидромеханический расчет теплообменных аппаратов: конденсатора и испарителя. Конденсатор выберем горизонтальный кожухотрубный с водяным охлаждением. Испаритель выбираем горизонтальный кожухотрубный затопленного типа.
58448. Регуляторні системи організму людини 33.5 KB
  Продовжити знайомити учнів з фізіологічними та функціональними системами організму людини; особливу увагу звернути на регуляції функцій та регуляторні системи організму; формувати уявлення про організм як цілісну саморегулювальну систему.
58449. АВТОМАТИЗАЦИЯ КОРМОПРОИЗВОДСТВА. АВТОМАТИЗАЦИЯ КОМБИКОРМОВЫХ АГРИГАТОВ 3.52 MB
  Оборудование комбикормовых цехов (ОКЦ) предназначено для производства рассыпных полнорационных комбикормов в сельскохозяйственных предприятиях и на межхозяйственных комбикормовых заводах.
58450. Доба Мейдзі в Японії 71 KB
  Мета: навчальна схарактеризувати соціальноекономічний і політичний розвиток Японії в другій половині ХІХ ст.; визначити причини та напрямки зовнішньополітичної експансії Японії; розвиваюча розвивати в учнів уміння аналізувати і узагальнювати історичний матеріал...
58451. Різдво в Україні 76 KB
  Good morning, Sue! Nice to see you! Hello, Ralf!How is life? Hi, Seon! How are you getting on? What season is it now? What are winter months? Do you like winter? What can we do in winter? What else is good about winter?re are a lot of wonderful holidays...
58452. Їжа. Food. Dishes 51.5 KB
  This is a picture of our New Years party. This is my family: My Mum, Dad, my little sister Ann and our dog. Mum is watching TV/eating the cake. Dad is watching TV/sleeping. Ann is singing/dancing. She looks happy!
58453. Застосування загального правила додавання двоцифрових чисел до обчислень виду 54 + 30, 54 + 3 47 KB
  Мета. Формувати вміння застосовувати загальне правило додавання двоцифрових чисел до окремих випадків, коли в одному із компонентів цих дій відсутні десятки або одиниці; закріплювати вміння розвязувати задачі.
58454. Вторая война Рима с Карфагеном (218-201 гг. до н.э.) 57 KB
  Это выдающийся карфагенский полководец Ганнибал. С детских лет Ганнибал готовился к войне с римлянами. Ганнибал произнес вслед за ним: Клянусь что я никогда не буду другом римлян и сделаю им столько зла сколько смогу Ганнибал до самой смерти остался верен этой клятве. Ганнибал был образованным человеком.