96719

Программная реализация решения алгебраического уравнения методом Бернулли

Курсовая

Математика и математический анализ

Вычислительная техника наших дней представляет собой мощные средства для фактического выполнения счетной работы. Благодаря этому во многих случаях стало возможным отказаться от приближенной трактовки прикладных вопросов и перейти к решению задач в точной постановке.

Русский

2015-10-09

194.5 KB

1 чел.

Министерство образования и науки РФ

ФГБОУ ВПО «Удмуртский государственный университет»

Математический факультет

Кафедра вычислительной механики

Курсовая работа на тему:

«Программная реализация решения алгебраического уравнения методом Бернулли».

           Научный руководитель:

Камидуллина Т.В.

Студент группы ОБ-010800-31

Копысов Е.С.

                                                      Ижевск 2015г

Содержание


Введение

Вычислительная  техника наших дней представляет собой мощные средства для фактического выполнения счетной работы. Благодаря этому во многих случаях стало возможным отказаться от приближенной трактовки прикладных вопросов и перейти к решению задач в точной постановке. Решение уравнений – алгебраических или трансцендентных – представляет собой одну из существенных задач прикладного анализа, потребность в которой возникает в многочисленных и самых разнообразных разделах физики, механики, техники и естествознания в широком смысле этого слова. Курсовая работа посвящена одному из методов решения алгебраических уравнений – методу Бернулли.


Обозначения

coeffs - массив коэффициентов

с - массив коэффицентов (по Вержбницкому В.М. c[i])

i - счетчик цикла

coeffs.length - длина массива coeffs

u - массив коэффицентов (по Вержбницкому В.М. u[i])

k, i, j - счетчики циклов

g - корень (по первому условию)

gg - корень (по второму условию)

n - число коэфициентов

answer - строка для ввода с консоли

arrcoeffs - строчный массив коэффицентов

arrcoeffs.length - длина массива

ex - исключение типа NumberFormatException

ex - исключение типа NumberFormatException

ex - исключение типа Exception

lim - предел рандомизации

rnd - объект типа Random

root - корень


Постановка задачи

Метод Бернулли позволяет найти наибольший и наименьший по модулю корень алгебраического уравнения, но и несколько ближайших к нему (по модулю) корней.

Вычисления по методу Бернулли сводятся в основном к построению некоторой последовательности чисел , для построения которой выбираются вначале некоторые, вообще говоря, произвольные значения . После этого значения  вычисляются с помощью рекуррентной формулы:

,

Далее по виду последовательности определяется вид наибольшего (наименьшего) по модулю корня и значение этого корня.

Далее после того, как наибольший корень вычислен с достаточной степенью точности, определяется второй по величине модуля корень. Для второго корня строиться новая последовательность , вид которой определяется на основании типа сходимости последовательности построенной для предыдущего корня.

После того как найден второй по модулю корень, аналогично находятся третий и последующие корни.

Пусть погрешность округления во всех вычислениях постоянна и равна . Тогда относительная погрешность первого корня равна

, где .

Потеря точности для последующих корней может быть значительно больше.

Таким образом, метод Бернулли обладает очень простой вычислительной схемой. Основные вычисления сводятся к повторению операции накопления, что делает метод удобным для вычисления на ЭВМ. Кроме того, корни в методе Бернулли определяются не все сразу, а один или несколько наибольших (наименьших) по модулю корней, что приводит к потере точности для остальных корней.


Структура данных

Входные данные:  double[] coeffs, int n

Выходные данные:  double g1


Алгоритм


Заключение

Данный отчет был подготовлен в течение нескольких дней. Все досконально изучив и наладив, проверив программу, результаты работы меня удволетворили.


Приложение

Код программы

package Program;

import java.util.Random;

import java.util.Scanner;

public class Program {

public static Double bernoullisMethod(Double[] coeffs) { //метод Бернули

 int n = coeffs.length - 1; //инициализация переменной размера массива для коэфф-в c[i]

 double[] c = new double[n]; // создание экземпляра массива

 for (int i = 1; i < coeffs.length; i++) // в цикле -

  c[i - 1] = (-1) * coeffs[i] / coeffs[0]; // - подсчет c[i] коэфф-в

 double[] u = new double[n * 2]; // создание экземпляра массива для u[i] коэфф-в

 for (int i = 0; i < n - 1; i++)

  u[i] = 0; // инициализация элементов до n по начальным условиям

 for (int k = 1; k <= n; k++) { // в цикле для каждого u[n+k] элемента

  u[n - 1] = k; // присвоение значения по условию

  for (int j = 1; j <= n; j++) // вложенный цикл (сумма u[n+k])

   u[(n + k) - 1] = c[j - 1] * u[(n + k - j) - 1]; // подсчет u[n+k-j] коэфф-в

 }

 double g = u[n + n - 2] / u[n + n - 3]; // подсчет корня по первому  условию

 double gg = u[n + n - 1] / u[n + n - 3]; // подсчет корня по второму условию

 return Math.max(g, gg); // вывод максимального корня

 }

public static void main(String[] args) {

 while (true) {

  int n; //число коэфициентов

  Double[] coeffs; //массив коэффициентов

  try { //попытка выполнить дальнейший код

   // инициализация коэффициентов

   System.out.print("введите число коэфициентов полинома n = "); // вывод в консоль

   n = new Scanner(System.in).nextInt(); //ввод числа n с консоли

   //исключение простых уравнений, где n < 3

   if (n < 3) {

    System.out.println("задайте n больше ");

    continue;

   }

   coeffs = new Double[n]; //создание массива коэфф-в

   System.out.println("введете коэффиценты c[i] сами? да/нет"); // вывод в консоль

   String answer; //переменная ответа

   answer = new Scanner(System.in).nextLine(); //ввод ответа с консоли

   if (answer.equals("да")) { //проверка ответ. если "да", то происходит ввод значения коэфф-в вручную

    System.out.println("вводите коэффициенты в одну строку, отделяя пробелами"); // вывод в консоль

    String[] arrcoeffs = new Scanner(System.in).nextLine().split("\\s+"); //инициализация массива коэфф-в (строки)

    if (n == arrcoeffs.length) { //проверка равенства n и длины массива

     try { //попытка выполнить дальнейший код

      for (int i = 0; i < n; i++) { //для каждого коэфф-та -

       coeffs[i] = Double.parseDouble(arrcoeffs[i]); // - его конвертация из строки в вещественное число

      }

     } catch (NumberFormatException ex) { //перехватывание исключения NumberFormatException

      System.out.println("ошибка ввода: "

        + ex.getMessage() + "\n повторите ввод"); //вывод в консоль

      continue;

     } catch (NullPointerException ex) { //перехватывание исключения NullPointerException

      System.out.println("ошибка ввода: "

        + ex.getMessage() + "\n повторите ввод"); //вывод в консоль

      continue;

     } catch (Exception ex) { //перехватывание общего исключения (ошибки)

      System.out.println("один из коэф-тов не является числом "); //вывод в консоль

      continue;

     }

    } else { //когда n не совпадает с размерностью массива

     System.out.println("количество к-в не соответствует "

       + "введенному n\n повторите ввод"); // вывод в консоль

     continue;

    }

   } else { //если ответ не "да", коэфф-ты задаются рандомно

    int lim = 20; //предел рандомизации

    System.out.println("выбраны случайные целые коэффициэнты "

      + "из интервала [" + (-1) * lim + "," + lim + "]"); // вывод в консоль

    Random rnd = new Random(); //создание экземпляра класса Random

    for (int i = 0; i < n; i++) { // задание произвольных коэфф-в в цикле -

     coeffs[i] = (double) rnd.nextInt(lim + 1) - lim; // -  значения берутся из интервала [-lim;lim]

     System.out.format("%.2f ", coeffs[i]); // последовательный вывод в консоль

    }

   }

   // подсчет корней

   double root = bernoullisMethod(coeffs); //применение метода Бернули

   System.out.println("\nметодом Бернули посчитан один из максимальных "

     + "корней \ng1 = " + root

     + "\n хотите посчитать новые (или выйти)? да/нет"); //вывод в консоль

   

   // условие невыхода

   answer = new Scanner(System.in).nextLine(); // ввод ответа с консоли

   if (answer.equals("да")) // проверка ответа. если "да", то программа начинается сначала

    continue;

   else

    return; //иначе происходит выход

  } catch (Exception ex) { // перехватывание общего исключения

   System.err.println(ex); //вывод исключения через поток err

   System.out.println("повторите ввод"); // вывод в коноль

   continue;

  }

 }

}

}


Пример программы:


Литература  

  1.  Вержбицкий В.М. - Основы численных методов. Учебник для вузов. Высш. школа – 2002г.
  2.  Латыпова Н.В. «Методические указания и рекомендации по вычислительной практике» УдГу, Ижевск,2004г
  3.  Ким И.Г, Латыпова Н.В., Моторина О.Л. «Численные методы ч.2» УдГу, Ижевск,2013г
  4.  Ким И.Г, Латыпова Н.В.«Численные методы ч.1» УдГу, Ижевск,2012г

PAGE   \* MERGEFORMAT 1


 

А также другие работы, которые могут Вас заинтересовать

57710. Урок-турнір з інформатики «Комп’ютерні відмінники» 2.89 MB
  Мета уроку: Перевірити спільний рівень ерудиції; знання учнів з вивчених розділів та тем навчальної програми; вміння та навички учнів отриманих на уроках інформатики...
57711. Устройство компьютера. Урок информатики 67.5 KB
  Цели урока: помочь учащимся усвоить устройство компьютера понятие базовая конфигурация ПК дать основные понятия необходимые для начала работы на компьютере; воспитание информационной культуры учащихся внимательности аккуратности дисциплинированности усидчивости; развитие познавательных интересов навыков работы с мышью и клавиатурой самоконтроля умения конспектировать. Оборудование:компьютер учебник компьютерная презентация. На прошлом уроке мы начинали знакомство с компьютером. Сегодня мы рассмотрим какие устройства...
57712. Прямокутна система координат у просторі. Декартові координати у просторі 1.75 MB
  Мета уроку: ввести поняття прямокутної системи координат у просторі з використанням історичного матеріалу навчати будувати точку за заданими координатами та знаходити координати точок які зображенні у заданій системі координат...
57713. Прямоугольная система координат. Расстояние между точками. Координаты середины отрезка 286 KB
  Актуализация опорных знаний фронтальный опрос сильных учащихся с наводящими вопросами по будущим заданиям Что такое треугольник фигура состоящая из 3х точек не лежащих на одной прямой и 3х отрезков попарно соединяющих эти точки...
57714. Паливні корисні копалини України 69 KB
  Мета: поглибити й систематизувати знання учнів про паливні ресурси та їх звязок з геологічною будовою; виявити закономірності розташування родовищ корисних копалин України за допомогою карт атласу...
57715. Кримські гори. Загальна характеристика гірської країни 990.5 KB
  Мета уроку: сформувати знання про особливості географічного положення Кримських гір та їх природних умов надати учням систему знань про особливості розподілу висотних поясів ландшафтів гірського Криму...
57716. Органи кровообігу: серце і судини. Взаємозалежність будови органів кровообігу і функцій які вони виконують 581 KB
  Звук Демонстрація на екрані пульсуючого серця і запис роботи серця. Вивчили будову цих серця і судин. Який орган забезпечує рух крові по судинах Епіграфом уроку можна взяти слова: Слайд Серце може додати розуму але розум не може додати серця.
57717. Історія життєвих випробувань Робінзона Крузо у романі Даніеля Дефо «Робінзон Крузо» 49.5 KB
  Відомий французький просвітитель Жан-Жак Руссо вважав: «Робінзон Крузо» - це перша книга, яку варто прочитати кожній людині, як тільки вона навчиться читати за букварем.
57718. Народна та професійна культура через призму історії України та української літератури першої половини ХІХ століття 128.5 KB
  Українська культура І половини ХІХ століття Художня культура. Народна та професійна культура Українська література. Шевченко - художник Музичні інструменти: кобза бандура Основні поняття: культура народна культура професійна культура етнографія...