969

Создание объектов разработанного класса (символьная строка)

Контрольная

Информатика, кибернетика и программирование

Описание диаграммы классов. Блок-схема метода ExchangeWords. Динамический массив символов и операции над ним. Цикл while и оператор if. обработка строк стандартными функциями библиотеки string.

Русский

2013-01-06

323.5 KB

116 чел.

Министерство образования республики Беларусь

Учреждение образования

«БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ»

Институт информационных технологий

Специальность__________ИСиТ_______________

КОНТРОЛЬНАЯ РАБОТА

По курсу «Объектоно-ориентированное программирование»

Вариант №11

Студент-заочник I курса

Группы №182322

Лисовский Дмитрий

Константинович

Адрес 225510 ул. Солнечая, 74

г. Берёза Брестская обл.

Тел. 8(029)828-35-86

Минск, 2011

Содержание

Содержание 2

Задание 1 3

1.1. Формулировка задания 3

1.2. Диаграмма классов 3

1.3. Описание диаграммы классов 3

1.4. Блок-схема метода «ExchangeWords()» 4

1.5. Текст программы 4

1.6. Результат выполнения программы 8

1.7. Теоретическая часть 8

Задание 2 9

2.1. Формулировка задания 9

2.2. Диаграмма классов 9

2.3. Описание диаграммы классов 9

2.4. Блок-схема метода «operator -= (const MyClass &)» 10

2.5. Текст программы 10

2.6. Результат работы программы 12

2.7. Теоретическая часть 13

Задание 3 14

3.1. Формулировка задания 14

3.2. Диаграмма классов 14

3.3. Описание диаграммы классов 14

3.4. Блок-схема метода «MaxSummElementsCol()» 16

3.5. Текст программы 17

3.6. Результат работы программы 20

3.7. Теоретическая часть 20

Список использованных источников 21


Задание 1

1.1. Формулировка задания

Создать 2 объекта разработанного класса. Одной из компонент класса является  символьная строка. В результате выполнения программы в обоих объектах поменять местами первое и последнее слова строки. Содержимое объектов (их строки) до и после обмена вывести на экран.

1.2. Диаграмма классов

1.3. Описание диаграммы классов

Метод ExchangeWords() возвращает указатель на обработанную в соответствии с заданием строку. Для осуществления обмена местами слов сначала вызывается метод TrimString(), который отсекает пробелы и символы табуляции в начале и конце строки, затем метод CheckString() проверяет условия осуществления обмена местами слов: строка не пуста и содержит как минимум два слова, разделённых пробелом. Метод PrintSourceString() выводит на экран значение свойства str, в соответствии с заданием он реализован как friend. Класс, так же содержит конструктор копирования и перегруженный конструктор с параметром char *.

1.4. Блок-схема метода «ExchangeWords()»

1.5. Текст программы

WordsExchanging.h

#ifndef WORDSEXCHANGING

#define WORDSEXCHANGING

#include <iostream>

#include <string.h>

#include <Windows.h>

using namespace std;

// Класс для обмена позиции первого и последнего слова в строке.

class WordsExchanging

{

public:

// Конструкторы.

WordsExchanging();

explicit WordsExchanging(const char * );

// Конструктор копирования.

WordsExchanging(WordsExchanging &rhs);

// Деструктор.

~WordsExchanging();

// Методы.

friend void PrintSourceString(const WordsExchanging & src);

WordsExchanging & SetNewString(const char *);

char * ExchangeWords();

private:

char * str;

bool CheckString() const;

char * TrimString() const;

};

#endif

WordsExchanging.cpp

#include "WordsExchanging.h"

// Конструктор.

WordsExchanging::WordsExchanging()

{

str = new char [1];

str[0]='\0';

}

// char * Конструктор.

WordsExchanging::WordsExchanging(const char * ch)

{

str = new char[strlen(ch)+1];

strcpy(str, ch);

}

// Конструктор копирования.

WordsExchanging::WordsExchanging(WordsExchanging &rhs)

{

str = new char [strlen(rhs.str) + 1];

strcpy(str, rhs.str);

}

// Деструктор.

WordsExchanging::~WordsExchanging()

{

delete [] str;

}

// Проверка строки.

bool WordsExchanging::CheckString() const

{

char * buffer = TrimString();

if(strlen(buffer) == 0)

{

 cout << "\nError #1: The string is empty!";

 return false;

}

if(strchr(buffer, ' ') == NULL)

{

 cout << "\nError #2: There is only one word in string!";

 return false;

}

return 1;

}

// Удаление ненужных символов.

char * WordsExchanging::TrimString() const

{

char * buffer = new char [strlen(str)+1];

strcpy(buffer, str);

    // Удаление пробелов и табов в начала строки.

    int i=0,j;

    while((buffer[i]==' ')||(buffer[i]=='\t'))

    {

         i++;

    }

    if(i>0)

    {

         for(j=0;j< int(strlen(buffer));j++)

         {

              buffer[j]=buffer[j+i];

         }

         buffer[j]='\0';

    }

    // Удаление пробелов и табов в конце строки.

    i=strlen(buffer)-1;

    while((buffer[i]==' ')||(buffer[i]=='\t'))

    {

         i--;

    }

    if(i<int(strlen(buffer)-1))

    {

         buffer[i+1]='\0';

    }

 return buffer;

}

// Вывод строки на экран. (friend - функция)

void PrintSourceString(const WordsExchanging & src)

{

cout << src.str;

}

// Ввод строки.

WordsExchanging & WordsExchanging::SetNewString(const char * newstr)

{

delete [] str;

str = new char [strlen(newstr)+1];

strcpy(str, newstr);

return *this;

}

// Обмен слов.

char * WordsExchanging::ExchangeWords()

{

if(! CheckString())

{

 return NULL;

} else

{

 char * buffer = TrimString();

 int bufferlen = strlen(buffer);

 char * ptFirst = strchr(buffer, ' ');

 char * ptLast = strrchr(buffer, ' ');

 int firstStrLen = ptFirst - buffer;

 int lastStrLen = bufferlen - (ptLast - buffer + 1);

 int otherStrLen = bufferlen - (firstStrLen+lastStrLen);

 char * res = new char [bufferlen+1];

 char * firstWord = new char [firstStrLen+1];

 char * lastWord = new char [lastStrLen+1];

 char * otherString = new char [otherStrLen+1];

 res[0] = '\0';

 firstWord[firstStrLen] = '\0';

 lastWord[lastStrLen] = '\0';

 otherString[otherStrLen] = '\0';

 strncpy(firstWord, buffer, firstStrLen);

 strncpy(lastWord, ptLast + 1, lastStrLen);

 strncpy(otherString, ptFirst, otherStrLen);

 strcat(res, lastWord);

 strcat(res, otherString);

 strcat(res, firstWord);

 delete [] firstWord;

 delete [] otherString;

 delete [] lastWord;

 delete [] buffer;

 cout << res << endl;

 return res;

}

}

main.cpp

#include "WordsExchanging.h"

int main()

{

WordsExchanging * obj1;

WordsExchanging * obj2;

cout << "-= The first object: =-\n\n";

obj1 = new WordsExchanging();

obj1->SetNewString("last and first");

cout << "Source string: ";

PrintSourceString(*obj1);

cout << "\nString after processing: ";

obj1->ExchangeWords();

cout << "\n\n-= The second object: =-\n\n";

obj2 = new WordsExchanging();

obj2->SetNewString("     String contains spaces and long    ");

cout << "Source string: ";

PrintSourceString(*obj2);

cout << "\nString after processing: ";

obj2->ExchangeWords();

delete obj1;

delete obj2;

return 0;

}

1.6. Результат выполнения программы

1.7. Теоретическая часть

Для выполнения задания был использован динамический массив символов и оперцации над ним: выделение/освобождение памяти, обработка строк стандартынми функциями библиотеки string.h, ввод/вывод библиотекой iostream. Использовался цикл while и оператор if. Использовался friend – метод.

Задание 2

2.1. Формулировка задания

Создать несколько объектов  (например, a и b) разработанного класса. Класс – символьная строка. Реализовать для объектов данного класса перегрузку операции  -=   (b-=a). Содержимое объектов (a,b, их строк), до и после выполнения операции, вывести на экран.

2.2. Диаграмма классов

 

2.3. Описание диаграммы классов

Класс содержит свойство – str – указатель на char. Два конструктора, один из них параметризован, конструктор копирования, методы установки и вывода значения на экран. Метод «operator -=» возвращает исходную строку без вхождений второй, указанной после знача =.

2.4. Блок-схема метода «operator -= (const MyClass &)»

2.5. Текст программы

MyClass.h

#ifndef MYCLASS

#define MYCLASS

#include <iostream>

#include <string.h>

using namespace std;

class MyClass

{

public:

MyClass();

MyClass(const char * src);

MyClass(const MyClass & src);

~MyClass();

MyClass & SetStr(const char *);

void PrintStr() const;

MyClass & operator -= (const MyClass &);

private:

char * str;

};

#endif

MyClass.cpp

#include "MyClass.h"

MyClass::MyClass()

{

str = new char[1];

str[0]='\0';

}

MyClass::MyClass(const char * src)

{

str = new char[strlen(src)+1];

strcpy(str, src);

}

MyClass::MyClass(const MyClass & src)

{

str = new char[strlen(src.str)+1];

strcpy(str, src.str);

}

MyClass::~MyClass()

{

delete [] str;

}

MyClass & MyClass::SetStr(const char * src)

{

delete [] str;

str = new char[strlen(src)+1];

strcpy(str, src);

return *this;

}

void MyClass::PrintStr() const

{

cout << str << endl;

}

MyClass & MyClass::operator -= (const MyClass & src)

{

char * temp = new char [strlen(str)+1];

strcpy(temp, str);

char * rightStr = 0;

char * leftStr = 0;

char * pt = 0;

while (0 != (pt=strstr(temp, src.str)))

{

 leftStr = new char [pt - temp + 1];

 leftStr[pt - temp] = '\0';

 strncpy(leftStr, temp, pt - temp);

 rightStr = new char [strlen(pt) - strlen(src.str) + 1];

 rightStr[strlen(pt) - strlen(src.str)] = '\0';

 strncpy(rightStr, pt + strlen(src.str), strlen(pt) - strlen(src.str));

 delete [] temp;

 temp = new char [strlen(leftStr) + strlen(rightStr) + 1];

 temp[strlen(leftStr) + strlen(rightStr)] = '\0';

 strcpy(temp, leftStr);

 strcat(temp, rightStr);

 delete [] leftStr;

 delete [] rightStr;

}

this->SetStr(temp);

delete [] temp;

return *this;

}

main.cpp

#include "MyClass.h"

int main()

{

MyClass a("ababababab");

MyClass b("b");

a.PrintStr();

b.PrintStr();

a-=b;

a.PrintStr();

return 0;

}


2.6. Результат работы программы

2.7. Теоретическая часть

Для решения задачи был использован динамический массив символов и оперцации над ним: выделение/освобождение памяти, обработка строк стандартынми функциями библиотеки string.h, ввод/выод библиотекой iostream. Использовался цикл while и оператор if.


Задание 3

3.1. Формулировка задания

Создать иерархию классов представляющих простое наследование. Базовый класс – матрица (динамическая (int **mt или int* или int *mt[константа])). Производный класс – методы, работающие с данными базового класса. Реализовать в производном классе метод – нахождения столбца с максимальной суммой элементов и заменой его с первым столбцом местами.

3.2. Диаграмма классов

 

3.3. Описание диаграммы классов

Базовый класс – «MatrixBase» содержит свойства и методы для работы с двумерным массивом элементов целого типа. В соответствии с заданием присутствуют методы «Get» и «Set» для доступа к закрытым членам класса. Класс «MatrixExt» - дочерний, содержит методы для выполнения задания: «MaxSummElementsCol» - находит столбец с максимальной суммой элементов, «SpawCols» - меняет местами столбцы, индексы которых переданы в параметры.

Оба класса содержат конструкторы, конструкторы копирования, деструкторы.

3.4. Блок-схема метода «MaxSummElementsCol()»

3.5. Текст программы

MatrixBase.h

#ifndef MATRIXBASE

#define MATRIXBASE

#include <iostream>

#include <stdio.h>

#include <windows.h>

#include <time.h>

using namespace std;

class MatrixBase

{

public:

MatrixBase():colsCount(0), rowsCount(0), a(0){}

MatrixBase(int, int, bool=true);

MatrixBase(const MatrixBase &);

MatrixBase & RandomFilling(int=1, int=100);

~MatrixBase();

void PrintMatrix() const;

int ** Get() const;

void Set(const int**, int, int);

protected:

int colsCount,rowsCount;

int **a;

int Random(int=1, int=100) const;

};

#endif

MatrixBase.cpp

#include "MatrixBase.h"

MatrixBase::MatrixBase(int rows, int cols, bool fillRand)

{

colsCount = cols;

rowsCount = rows;

a = new int * [rowsCount];

for(int i=0; i<colsCount; a[i++] = new int [colsCount]);

if(fillRand) RandomFilling();

}

MatrixBase::MatrixBase(const MatrixBase & src)

{

rowsCount = src.rowsCount;

colsCount = src.colsCount;

a = new int * [rowsCount];

for(int i=0; i<colsCount; a[i++] = new int [colsCount]);

for(int i=0; i<rowsCount; ++i)

 for(int j=0; j<colsCount; ++j) a[i][j] = src.a[i][j];

}

MatrixBase::~MatrixBase()

{

for(int i=0; i<rowsCount; delete [] a[i++]);

delete [] a;

}

int MatrixBase::Random(int min, int max) const

{

return rand()%(max - min) + min;

}

MatrixBase & MatrixBase::RandomFilling(int min, int max)

{

srand (time(NULL));

for(int i=0; i<rowsCount; ++i)

 for(int j=0; j<colsCount; a[i][j++] = Random(min, max));

return *this;

}

void MatrixBase::PrintMatrix() const

{

for(int i=0; i<rowsCount; ++i, cout << endl)

 for(int j=0; j<colsCount; cout << a[i][j++] << "\t");

cout << endl;

}

int ** MatrixBase::Get() const

{

return a;

}

void MatrixBase::Set(const int ** arr, int NewColsCount, int NewRowsCount)

{

for(int i=0; i<this->rowsCount; delete [] a[i++]);

delete [] a;

colsCount = NewColsCount;

rowsCount = NewRowsCount;

a = new int * [rowsCount];

for(int i=0; i<colsCount; a[i++] = new int [colsCount]);

for(int i=0; i<rowsCount; ++i)

 for(int j=0; j<colsCount; ++j) a[i][j] = arr[i][j];

}

MatrixExt.h

#include "MatrixBase.h"

#ifndef MATRIXEXT

#define MATRIXEXT

class MatrixExt: public MatrixBase

{

public:

MatrixExt():MatrixBase(){}

MatrixExt(int rows, int cols, bool fillRand=true):MatrixBase(rows, cols, fillRand){}

MatrixExt(const MatrixBase &src):MatrixBase(src){}

int MaxSummElementsCol() const;

MatrixExt & SpawCols(int, int);

};

#endif

MatrixExt.cpp

#include "MatrixExt.h"

int MatrixExt::MaxSummElementsCol() const

{

if(colsCount<1)

{

 cout << "Error! Columns count is 0!" << endl;

 return -1;

}

int ColElementsSumm = 0;

int MaxSumm = 0;

int ColMaxSumm = 0;

for(int j=0; j<colsCount; ++j)

{

 ColElementsSumm = 0;

 for(int i=0; i<rowsCount; ++i)

 {

  ColElementsSumm += a[i][j];

 }

 if(j==0) MaxSumm = ColElementsSumm;

  else

   if(ColElementsSumm>=MaxSumm)

   {

    MaxSumm = ColElementsSumm;

    ColMaxSumm = j;

   }

}

cout << "Max summ = " << MaxSumm << " in column #" << ColMaxSumm + 1 << endl;

return ColMaxSumm;

}

MatrixExt & MatrixExt::SpawCols(int col1, int col2)

{

if(col1>colsCount || col1 < 0 || col2>colsCount || col2 < 0)

{

 cout << "Error! Column number out of range!" << endl;

 return *this;

}

for(int i=0; i<rowsCount; ++i)

{

 int t = a[i][col1];

 a[i][col1] = a[i][col2];

 a[i][col2] = t;

}

return *this;

}

main.cpp

#include "MatrixExt.h"

int main()

{

MatrixExt a(5,5);

a.PrintMatrix();

a.SpawCols(a.MaxSummElementsCol(), 0).PrintMatrix();

return 0;

}

3.6. Результат работы программы

3.7. Теоретическая часть

Для решения задачи использовался двумерный динамический массив элементов целого типа и операции над ним: выделение/высвобождение памяти, заполнение, вывод на экран стандартной библиотекой iostream. Так же в приминено наследование.


Список использованных источников

  1.  Пол А. Объектно-ориентированное программирование на С++ – Изд-во Бином, Невский Диалект, 2001. –  464 с.
    1.  Буч Г. Объектно-ориентированное программирование с примерами применения  Издательство: M.: Конкорд, раниц; 1992 г. – 519 с
    2.  Дж. Либерти C++. Энциклопедия пользователя, Издательство: ДиаСофт, 2001 г.,  –  М. - Мысль, 1969. – 590 с.


 

А также другие работы, которые могут Вас заинтересовать

20073. Мостовая схема включения резистивных преобразователей. Балансировка 79.5 KB
  Ветви с сопротивлениями R1 R2 R3 и R4 называются плечами моста. Ветви включающие измерительный прибор и источник питания называются диагоналями моста. Резистивные преобразователи могут включаться в 1 2 или все четыре плеча моста режим х. то выходное напряжение моста: ; где Uпит = Е напряжение питания.
20074. Схемы включения емкостных преобразователей. Резонансная схема 74.5 KB
  Резонансная схема. REM: Рассмотрим схемы преобразующие изменения с в напряжение: Резонансная схема Используется для включения недифференциальн. Чувствительность схема довольно высока. Схема чувствительна к температурным погрешностям имеет несимметричность ст.
20075. Мостовая схема включения емкостных преобразователей 61 KB
  Экранирование. Для устранения влияния внешних электромагнитных полей применено экранирование.
20076. Прямоугольно-координатный компенсатор переменного тока. Условие компенсации 43 KB
  Uax = Uak Upx = Upk Вследствие этого компенсаторы потенциометры переменного тока должны иметь схему более сложную чем компенсаторы постоянного тока. Различают два вида потенциометров переменного тока: Полярнокоординатные в которых отдельно регулируется модель компенсирующего напряжения и отдельно его фаза обычно с помощью фазорегулятора того или иного вида. Цепь имеет два контура: Первый контур тока IР содержит измерительный резистор Ra первичную обмотку катушки взаимоиндуктивности М и амперметр А.
20077. Устройства выборки зазора в винтовых механизмах 8.53 MB
  Устройства выборки зазора в винтовых механизмах. 1корпус 2винт 3двусторонняя цанга 4регулировочная цанга 5стопорный винт При повышенной сложности устройство может применяться как в силовых так и кинематических передачах и работоспособна при высоких скоростях вращения. Выборка осевого зазора между винтом и базой. винт Корпус Упорный подшипник Упорный подшипник служит для снижения потерь при значительных осевых нагрузках на винт.
20078. ЗУБЧАТЫЕ МЕХАНИЗМЫ. КЛАССИФИКАЦИЯ. БОКОВОЙ ЗАЗОР. МЕРТВЫЙ ХОД. УСТРОЙСТВА ВЫБОРКИ МЕРТВОГО ХОДА 82 KB
  в которых движение передается и преобразуется за счет зацепления зубьев колес. По расположению и форме зубьев прямозубые косозубые и шевронные По назначению силовые кинематические и скоростные . По профилю зубьев в приборостроении нашли применение эвольвентное и часовое зацепление упрощенный профиль. уменьшать число зубьев трибки до z = 6 сохраняя плавность но при этом передаточное отношение перестает быть строго постоянным.
20079. Выявление первичных погрешностей. Методика акад. Н.Г. Бруевича 101.5 KB
  Бруевича Под первичной погрешностью понимают любое отклонение параметров цепи от расчетных приводящих к искажению градуировочных характеристик. Первичная погрешность механизма это отклонение в расстоянии м у кинематическими отклонениями звена это отклонение размеров их формы и расположения. Все первичные погрешности разделяют на 2 категории: скалярные перв.
20080. Выявление первичных погрешностей. Методика проф. Н.А.Калашникова 44.5 KB
  Первичные погрешности делятся на : скалярные направление их действия заранее известно а значение их или модуль заранее предсказать нельзя но оно может быть принято в пределах поля допуска . значение их или модуль любое в пределах поля допуска и направление любое в пределах зоны действия. Они характеризуются неопределенным непредсказуемым направлением действия. Для нахождения значения и характера изменения действующей погрешности необходимо учитывать что воздействие между профилями поверхностей элементов кинематических пар происходит...
20081. Конструирование при циклическом нагружении. Факторы, повышающие и снижающие предел выносливости 101.5 KB
  Уменьшение концентрации напряжений. Если устранить концентраторы напряжений полностью невозможно то следует заменять сильные концентраторы умеренно действующими. Концентраторы следует удалять из наиболее напряженных участков детали и переносить если это допускает конструкция в зоны наименьших напряжений. С целью уменьшения номинальных напряжений целесообразно увеличивать сечения детали на участках расположения концентраторов.