97041

Дискретное преобразование Гильберта

Курсовая

Информатика, кибернетика и программирование

Во многих радиолокационных системах очень важной задачей является наиболее точное определение характеристик сигнала. Есть много различных методов решения этой задачи каждый со своими особенностями один из наиболее известных способов решения этой задачи завязан на определении спектра сигнала с помощью преобразования Фурье но в связи...

Русский

2015-10-13

276.5 KB

11 чел.

Московский государственный технический университет имени Н.Э.Баумана

(МГТУ им. Н.Э.Баумана)

Курсовая работа по теме

“Дискретное преобразование Гильберта”

по дисциплине “Радиотехнические цепи и сигналы”

Выполнил студент группы СМ5-52
Матюнин Дмитрий

Проверил Хохлов В.К.

Москва 2015

Содержание

Введение 3

Теоретическая часть 4

Практическая часть 9


Введение

Во многих радиолокационных системах очень важной задачей является наиболее точное определение характеристик сигнала. Есть много различных методов решения этой задачи (каждый со своими особенностями), один из наиболее известных способов решения этой задачи завязан на определении спектра сигнала с помощью преобразования Фурье, но в связи с тем, что радиолокационные системы являются системами реального времени, а преобразование Фурье требует довольно большое количество операций для его выполнения, то весьма затруднительно при затрачивании малого количество ресурсов (среди которых: габариты устройства, энерго- и тепло- потребление, масса, цена) выполнить быстродействующий детектор (работающий в режиме реального времени) , использующий преобразование Фурье. Поэтому приходится прибегать к упрощенном и квазиоптимальным алгоритмам определения параметров сигнала, с помощью которых можно будет реализовать такой детектор. Один из способов – это построить детектор, использующий преобразование Гильберта. В данной работе рассматривается мат. ожидания и дисперсии шума квантования до и после прохождения через фильтр Гильберта.


Теоретическая часть

Преобразование Гильберта для любого произвольного сигнала представляет собой идеальный широкополосный фазовращатель, который осуществляет поворот начальных фаз  всех частотных составляющих сигнала на угол, равный 90о (сдвиг на /2). Применение преобразования Гильберта позволяет выполнять квадратурную модуляцию сигналов, в каждой текущей координате модулированных сигналов производить определение огибающей и мгновенной фазы и частоты сигналов.

Прямое преобразование Гильберта произвольной действительной функции x(t),

-< t <, результат которого будем отображать со знаком тильды над индексом исходной функции, задается сверткой x(t) с функцией

, где TH сокращение от Transform Hilbert.

Функция  называется ядром преобразования Гильберта. Обратное преобразование Гильберта определяется выражением:

Преобразование Фурье от функции  :

, где TF сокращение от Transform Fourier. Фурье-образ функции :


Рисунок 1.1 – Исходный и преобразованный сигнал

Изменение спектра сигналов при выполнении преобразования Гильберта. На рисунке 1.2.1 приведено преобразование радиоимпульсного сигнала x(t) с несущей частотой fo в сигнал  во временной области непосредственно через операцию свертки с функцией  .  Сигнал x(t) является односторонним каузальным. Спектр сигнала содержит реальную и мнимую составляющие, т.е. может быть записан в виде . Эти составляющие для сигнала x(t)  показаны непрерывными кривыми на

рисунке 1.2.2.

Рисунок 1.2. – Спектральные составляющие сигнала x(t)

При выполнении преобразования   реальная и мнимая части спектра X(w) умножаются на -jsgn(w). Функция Re(X(w)) умножается на 1 при w<0, на 0 при w=0 и на –1 при w>0, и тем самым превращается в нечетную мнимую часть Im((w)) спектра (w) функции (t), показанную пунктиром. Это означает, что все косинусные гармоники сигнала, которым соответствует реальная часть спектра сигнала, превращаются в синусные гармоники.

Аналогично на функцию –j sgn(w) умножается и мнимая функция  j Im(X(w)), при этом сигнатурная функция инвертируется (-j j = 1), что меняет знак левой части функции Im(X(w)) – области отрицательных частот, и превращает ее в реальную четную часть  спектра . Синусные гармоники спектра сигнала превращаются в косинусные гармоники.

При выполнении преобразования гильберта фазовый спектр сигнала (t) (начальные фазовые углы всех гармонических составляющих сигнала) сдвигается на -90о при f > 0 и на 90о при f < 0 относительно фазового спектра сигнала x(t).

Свойства преобразования Гильберта:

Линейность.  ТН[ax(t)+by(t)] = a(t)+b(t) при любых постоянных значениях коэффициентов а и b для любых произвольных функций x(t) и y(t).

 Сдвиг.  ТН[x(t-a)] = (t-a).

 Преобразование константы, а в силу линейности преобразования, и постоянной составляющей сигнала, равно нулю. Это прямо следует из нечетности ядра преобразования Гильберта. Отсюда следует, что при преобразовании Гильберта из квадратурной составляющей исключается постоянная составляющая.

Свойство четности и нечетности определяется сдвигом всех гармоник сигнала на /2, при этом четные сигналы x(t) дают нечетные сигналы (t), и наоборот. Это действительно и для произвольных сигналов относительно их четных и нечетных частей.

Последовательное двойное преобразование Гильберта возвращает исходную функцию с обратным знаком ТН[ТН[x(t)]] = ТН[(t)] = -x(t). Это определяется тем, что при двойном преобразовании фазы всех гармоники сигнала сдвигаются на , что изменяет знак их гармоник. Однако в силу исключения из сигнала при первом преобразовании постоянной составляющей, при двойном преобразовании сигнал x(t) восстанавливается с исключенным средним значением по интервалу задания.

 Обратное преобразование Гильберта, по существу, это второе преобразование в последовательном двойном преобразовании Гильберта с изменением знака результата:

x(t) = ТH-1[(t)] = -= (t) * (-1/t).

Альтернативная форма вычисления x(t) из (t):

x(t) = TF-1[(j sgn(f)TF[(t)]].                               

 Подобие при изменении масштаба аргумента: ТН[x(at)] = (at).

 Энергетическая эквивалентность:

 x2(t) dt =2(t) dt.

Это следует из теоремы Парсеваля (энергия сигнала равна сумме энергии всех частотных составляющих сигнала) и равенства модулей спектров сигналов x(t) и (t) (энергия сигнала не зависит от его фазовочастотной характеристики).

 Свойство ортогональности:  

x(t)(t) dt = 0

Если все косинусные составляющие сигнала x(t) превращаются в ортогональные им синусные составляющие сигнала , а синусные – в ортогональные им косинусные, то и сигналы x(t) и  должны быть ортогональны.

 Свойство свертки:  

TH[x(t) * y(t)] = (t) * y(t) = x(t) * (t).

 Это вытекает из следующих соображений. Примем  z(t) = x(t) * y(t), при этом:

Z(f) = X(f)Y(f),    (f) = -j sgn(f)Z(f) = -j sgn(f) X(f)Y(f).

(f) = [-j sgn(f) X(f)]Y(f) = (t)Y(f) (t) * y(t).

(f) = X(f)[-j sgn(f) Y(f)] = X(f)(f) x(t) *(t).

 Отсутствие коммутативности с преобразованием Фурье:

TF[ТН[x(t)]] ТН[TF[x(t)]].

 Свойство модуляции: Модулирующие сигналы u(t), как правило, имеют ограниченный спектр, максимальные частоты которого   много меньше значения несущей частоты wo, при этом:

ТН[u(t)cos(wot)] = u(t)sin(wot).

Оператор дискретного преобразования Гильберта hb(kΔt) 1/πt на интервале от -Т до Т с шагом Δt можно получить обратным преобразованием Фурье частотной характеристики Hb(f) (выражение 1.3) в интервале от -fN до fN  (fN=1/2Δt). При Δt=1:

hb(kΔt) =Hb(f) exp(j2πfkΔt) df =j exp(j2πfkΔt) df -j exp(j2πfkΔt) df =

= [1/(2πkΔt)][1-exp(-jπkΔt)-exp(jπkΔt)+1] = [1/(πkΔt)][1-(exp(-jπkΔt)+exp(jπkΔt)/2] =

= [1/(πkΔt)](1-cos(πkΔt)) = [2/(πkΔt)] sin2(πkΔt/2).  (1.4)

hb(kΔt) = 2/(πkΔt),   k = 1, 3, 5, ... ,

hb(kΔt) = 0,              k = 0, 2, 4, ... .

Нетрудно убедиться, что коэффициент усиления постоянной составляющей оператора равен нулю.

В частотной области при выполнении преобразования Гильберта спектральных функций оператор свертки hb(kΔf)1/πf  не отличается от приведенного для временной области.


Практическая часть

Создадим шум квантования и пропустим его через фильтр Гильберта.

Рисунок 2.1 – Исходный шум квантования и шум квантования на выходе фильтра Гильберта

Построим гистограммы распределения для наглядности результата (количество отсчётов – 10^4):

 

Рисунок 2.2 – Гистограммы распределения

Построим аналогичные графики для квадрата шума квантования:

Рисунок 2.3 – Распределение квадрата шума квантования

Найдём дисперсию шумов по формуле:

,где Q – шаг квантования (0.5), получим D = 0.0208(3)

Для опыта, проведённого по 10^5 отсчётов посчитаем дисперсию как 2ой центральный момент:

Дисперсия исходного шума квантования = 0.0833

Дисперсия шума квантования на выходе фильтра Гильберта = 0.0787


 

А также другие работы, которые могут Вас заинтересовать

22345. Основные архитектуры РПТ. Шумовые характеристики, динамический диапазон 431.5 KB
  Как и в квадратурном смесителе здесь используется пара идентичных смесителей на которые помимо РЧ сигнала подается сигнал с гетеродина в квадратуре. Сигналы в I и Q каналах содержат полную информацию об огибающей входного сигнала и могут быть обработаны в соответствующим образом построенном демодуляторе. В приемнике прямого преобразования наличие рассогласования в цепях смесителя и ФНЧ не ведет к ухудшению селективности а лишь к некоторому искажению полезного сигнала что зачастую не имеет никакого значения при приеме цифровых данных....
22346. Входные каскады РПТ. Высокочастотные фильтры, УРЧ 247.5 KB
  С точки зрения минимизации вносимых приемником шумов следовало бы в качестве первого каскада использовать малошумящий усилитель МШУ имеющий максимальный коэффициент усиления и минимальный коэффициент шума. Современные МШУ имеют коэффициент шума до 0. В диапазоне частот 450 мГц МШУ имеет коэффициент шума 2. Суммарный коэффициент шума в последовательном включении МШУ фильтр рассчитывается по 1.
22347. Непрерывность функций комплексной переменной 468 KB
  Если то функция называется непрерывной в точке . Иными словами: непрерывна в точке если для любого сколь угодно малого существует положительное число такое что 2 для всех удовлетворяющих неравенству 3 короче . Геометрически это означает что для всех точек лежащих внутри круга с центром в точке достаточно малого радиуса соответствующие значения функции изображаются точками лежащими внутри круга с центром в точке сколь...
22348. Интегрирование функций комплексной переменной 1.52 MB
  кривая с выбранным направлением движения вдоль нее и на ней функция комплексной переменной fz. Если C кусочногладкая а значит спрямляемая кривая а fz кусочнонепрерывная и ограниченная функция то интеграл 1 всегда существует. Если функция fz аналитична в односвязной области D то для всех кривых C лежащих в этой области и имеющих общие концы интеграл имеет одно и то же значение. fz аналитическая функция.
22349. Формула Коши и теорема о среднем 821.5 KB
  Пусть функция аналитична в связной области и непрерывна в . Тогда для любой внутренней точки этой области имеет место так называемая формула Коши: 1 где граница области проходимая так что область остается всё время слева. Таким образом формула Коши позволяет вычислить значение аналитической функции в любой точке области если известны граничные значения этой функции. Выбросим из области кружок радиусом с центром в точке и заметим что в полученной...
22351. Теоремы Лиувилля и Мореры 98 KB
  По определению аналитическая функция это функция комплексной переменной обладающая производной в каждой точке некоторой области D. Если функция fz аналитична в области D и непрерывна в то она обладает в каждой точке D производными всех порядков причем n я производная представляется формулой 1 где C граница области D. По определению производной и формуле Коши имеем: Но очевидно что при функция равномерна для всех на C стремиться к и следовательно по теореме 2 предыдущей лекции для случая семейства функций...
22352. Представление аналитических функций рядами 464 KB
  Ряды Тейлора. при каких условиях функция представима своим рядом Тейлора с центром в точке : 4 даёт Теорема 1 Коши. Функция представима своим рядом Тейлора 4 в любом открытом круге с центром в точке в котором она аналитична.
22353. Ряды Лорана 269.5 KB
  Поэтому обе формулы можно объединить в одну: 7 Полученное разложение 6 функции fz по положительным и отрицательным степеням za с коэффициентами определяемыми по формулам 7 называется лорановским разложением функции fz с центром в точке a; ряд 2 называется правильной а ряд 4 главной частью этого разложения. и в нашем рассуждении могут быть взяты сколь угодно близкими к r и R а q может сколь угодно мало отличаться от 1 то разложение 6 можно считать справедливым для...