97041

Дискретное преобразование Гильберта

Курсовая

Информатика, кибернетика и программирование

Во многих радиолокационных системах очень важной задачей является наиболее точное определение характеристик сигнала. Есть много различных методов решения этой задачи каждый со своими особенностями один из наиболее известных способов решения этой задачи завязан на определении спектра сигнала с помощью преобразования Фурье но в связи...

Русский

2015-10-13

276.5 KB

6 чел.

Московский государственный технический университет имени Н.Э.Баумана

(МГТУ им. Н.Э.Баумана)

Курсовая работа по теме

“Дискретное преобразование Гильберта”

по дисциплине “Радиотехнические цепи и сигналы”

Выполнил студент группы СМ5-52
Матюнин Дмитрий

Проверил Хохлов В.К.

Москва 2015

Содержание

Введение 3

Теоретическая часть 4

Практическая часть 9


Введение

Во многих радиолокационных системах очень важной задачей является наиболее точное определение характеристик сигнала. Есть много различных методов решения этой задачи (каждый со своими особенностями), один из наиболее известных способов решения этой задачи завязан на определении спектра сигнала с помощью преобразования Фурье, но в связи с тем, что радиолокационные системы являются системами реального времени, а преобразование Фурье требует довольно большое количество операций для его выполнения, то весьма затруднительно при затрачивании малого количество ресурсов (среди которых: габариты устройства, энерго- и тепло- потребление, масса, цена) выполнить быстродействующий детектор (работающий в режиме реального времени) , использующий преобразование Фурье. Поэтому приходится прибегать к упрощенном и квазиоптимальным алгоритмам определения параметров сигнала, с помощью которых можно будет реализовать такой детектор. Один из способов – это построить детектор, использующий преобразование Гильберта. В данной работе рассматривается мат. ожидания и дисперсии шума квантования до и после прохождения через фильтр Гильберта.


Теоретическая часть

Преобразование Гильберта для любого произвольного сигнала представляет собой идеальный широкополосный фазовращатель, который осуществляет поворот начальных фаз  всех частотных составляющих сигнала на угол, равный 90о (сдвиг на /2). Применение преобразования Гильберта позволяет выполнять квадратурную модуляцию сигналов, в каждой текущей координате модулированных сигналов производить определение огибающей и мгновенной фазы и частоты сигналов.

Прямое преобразование Гильберта произвольной действительной функции x(t),

-< t <, результат которого будем отображать со знаком тильды над индексом исходной функции, задается сверткой x(t) с функцией

, где TH сокращение от Transform Hilbert.

Функция  называется ядром преобразования Гильберта. Обратное преобразование Гильберта определяется выражением:

Преобразование Фурье от функции  :

, где TF сокращение от Transform Fourier. Фурье-образ функции :


Рисунок 1.1 – Исходный и преобразованный сигнал

Изменение спектра сигналов при выполнении преобразования Гильберта. На рисунке 1.2.1 приведено преобразование радиоимпульсного сигнала x(t) с несущей частотой fo в сигнал  во временной области непосредственно через операцию свертки с функцией  .  Сигнал x(t) является односторонним каузальным. Спектр сигнала содержит реальную и мнимую составляющие, т.е. может быть записан в виде . Эти составляющие для сигнала x(t)  показаны непрерывными кривыми на

рисунке 1.2.2.

Рисунок 1.2. – Спектральные составляющие сигнала x(t)

При выполнении преобразования   реальная и мнимая части спектра X(w) умножаются на -jsgn(w). Функция Re(X(w)) умножается на 1 при w<0, на 0 при w=0 и на –1 при w>0, и тем самым превращается в нечетную мнимую часть Im((w)) спектра (w) функции (t), показанную пунктиром. Это означает, что все косинусные гармоники сигнала, которым соответствует реальная часть спектра сигнала, превращаются в синусные гармоники.

Аналогично на функцию –j sgn(w) умножается и мнимая функция  j Im(X(w)), при этом сигнатурная функция инвертируется (-j j = 1), что меняет знак левой части функции Im(X(w)) – области отрицательных частот, и превращает ее в реальную четную часть  спектра . Синусные гармоники спектра сигнала превращаются в косинусные гармоники.

При выполнении преобразования гильберта фазовый спектр сигнала (t) (начальные фазовые углы всех гармонических составляющих сигнала) сдвигается на -90о при f > 0 и на 90о при f < 0 относительно фазового спектра сигнала x(t).

Свойства преобразования Гильберта:

Линейность.  ТН[ax(t)+by(t)] = a(t)+b(t) при любых постоянных значениях коэффициентов а и b для любых произвольных функций x(t) и y(t).

 Сдвиг.  ТН[x(t-a)] = (t-a).

 Преобразование константы, а в силу линейности преобразования, и постоянной составляющей сигнала, равно нулю. Это прямо следует из нечетности ядра преобразования Гильберта. Отсюда следует, что при преобразовании Гильберта из квадратурной составляющей исключается постоянная составляющая.

Свойство четности и нечетности определяется сдвигом всех гармоник сигнала на /2, при этом четные сигналы x(t) дают нечетные сигналы (t), и наоборот. Это действительно и для произвольных сигналов относительно их четных и нечетных частей.

Последовательное двойное преобразование Гильберта возвращает исходную функцию с обратным знаком ТН[ТН[x(t)]] = ТН[(t)] = -x(t). Это определяется тем, что при двойном преобразовании фазы всех гармоники сигнала сдвигаются на , что изменяет знак их гармоник. Однако в силу исключения из сигнала при первом преобразовании постоянной составляющей, при двойном преобразовании сигнал x(t) восстанавливается с исключенным средним значением по интервалу задания.

 Обратное преобразование Гильберта, по существу, это второе преобразование в последовательном двойном преобразовании Гильберта с изменением знака результата:

x(t) = ТH-1[(t)] = -= (t) * (-1/t).

Альтернативная форма вычисления x(t) из (t):

x(t) = TF-1[(j sgn(f)TF[(t)]].                               

 Подобие при изменении масштаба аргумента: ТН[x(at)] = (at).

 Энергетическая эквивалентность:

 x2(t) dt =2(t) dt.

Это следует из теоремы Парсеваля (энергия сигнала равна сумме энергии всех частотных составляющих сигнала) и равенства модулей спектров сигналов x(t) и (t) (энергия сигнала не зависит от его фазовочастотной характеристики).

 Свойство ортогональности:  

x(t)(t) dt = 0

Если все косинусные составляющие сигнала x(t) превращаются в ортогональные им синусные составляющие сигнала , а синусные – в ортогональные им косинусные, то и сигналы x(t) и  должны быть ортогональны.

 Свойство свертки:  

TH[x(t) * y(t)] = (t) * y(t) = x(t) * (t).

 Это вытекает из следующих соображений. Примем  z(t) = x(t) * y(t), при этом:

Z(f) = X(f)Y(f),    (f) = -j sgn(f)Z(f) = -j sgn(f) X(f)Y(f).

(f) = [-j sgn(f) X(f)]Y(f) = (t)Y(f) (t) * y(t).

(f) = X(f)[-j sgn(f) Y(f)] = X(f)(f) x(t) *(t).

 Отсутствие коммутативности с преобразованием Фурье:

TF[ТН[x(t)]] ТН[TF[x(t)]].

 Свойство модуляции: Модулирующие сигналы u(t), как правило, имеют ограниченный спектр, максимальные частоты которого   много меньше значения несущей частоты wo, при этом:

ТН[u(t)cos(wot)] = u(t)sin(wot).

Оператор дискретного преобразования Гильберта hb(kΔt) 1/πt на интервале от -Т до Т с шагом Δt можно получить обратным преобразованием Фурье частотной характеристики Hb(f) (выражение 1.3) в интервале от -fN до fN  (fN=1/2Δt). При Δt=1:

hb(kΔt) =Hb(f) exp(j2πfkΔt) df =j exp(j2πfkΔt) df -j exp(j2πfkΔt) df =

= [1/(2πkΔt)][1-exp(-jπkΔt)-exp(jπkΔt)+1] = [1/(πkΔt)][1-(exp(-jπkΔt)+exp(jπkΔt)/2] =

= [1/(πkΔt)](1-cos(πkΔt)) = [2/(πkΔt)] sin2(πkΔt/2).  (1.4)

hb(kΔt) = 2/(πkΔt),   k = 1, 3, 5, ... ,

hb(kΔt) = 0,              k = 0, 2, 4, ... .

Нетрудно убедиться, что коэффициент усиления постоянной составляющей оператора равен нулю.

В частотной области при выполнении преобразования Гильберта спектральных функций оператор свертки hb(kΔf)1/πf  не отличается от приведенного для временной области.


Практическая часть

Создадим шум квантования и пропустим его через фильтр Гильберта.

Рисунок 2.1 – Исходный шум квантования и шум квантования на выходе фильтра Гильберта

Построим гистограммы распределения для наглядности результата (количество отсчётов – 10^4):

 

Рисунок 2.2 – Гистограммы распределения

Построим аналогичные графики для квадрата шума квантования:

Рисунок 2.3 – Распределение квадрата шума квантования

Найдём дисперсию шумов по формуле:

,где Q – шаг квантования (0.5), получим D = 0.0208(3)

Для опыта, проведённого по 10^5 отсчётов посчитаем дисперсию как 2ой центральный момент:

Дисперсия исходного шума квантования = 0.0833

Дисперсия шума квантования на выходе фильтра Гильберта = 0.0787


 

А также другие работы, которые могут Вас заинтересовать

39904. Разработка информационной системы автоматизации фронт-офисных задач в гостиничном бизнесе 2.04 MB
  АНАЛИЗ СИСТЕМЫ УПРАВЛЕНИЯ БАЗАМИ ДАННЫХ MS SQL SERVER И ИНТЕГРИРОВАННОЙ СРЕДЫ РАЗРАБОТКИ BORLAND C BUILDER. Анализ системы управления базами данных. Масштабируемый доступ к базам данных. Проектирование базы данных Гостиница SRL Kiwiban.
39905. Финансы предприятия 415 KB
  Этот коэффициент характеризует степень финансового риска проекта для собственников предприятия и кредиторов и обычно анализируется банками при решении вопроса о предоставлении долгосрочного кредита; коэффициент покрытия долгосрочных обязательств отношение чистого прироста свободных средств сумма чистой прибыли после уплаты налога амортизации и чистого прироста собственных и заемных средств за вычетом осуществленных в отчетном периоде инвестиций к величине платежей по долгосрочным обязательствам погашение займов проценты по ним. Норма...
39907. Информация и информационные технологии 292.28 KB
  компьютер становится инструментом непрофессионального пользователя первые персональные компьютеры а несложные информационные системы ИС средством поддержки принятия решений. Как следствие этой проблемы создавались системы которые пользователи плохо воспринимали и несмотря на их достаточно большие возможности не использовали в полной мере. электронные технологии основным инструментарием которых становятся большие ЭВМ и создаваемые на их базе автоматизированные системы управления АСУ и информационнопоисковые системы ИПС...
39908. Возникновение и формирование проблемы внешней задолженности стран «Третьего мира» 152.5 KB
  Внешняя задолженность развивающихся стран и стран с переходной экономикой превратилась в самостоятельный объект международной политики, затрагивающей интересы практически всех государств мирового сообщества.
39910. Понятие, задачи и функции ИС 173.42 KB
  По степени автоматизации ИС делятся на: автоматизированные: информационные системы в которых автоматизация может быть неполной то есть требуется постоянное вмешательство персонала; автоматические: информационные системы в которых автоматизация является полной то есть вмешательство персонала не требуется или требуется только эпизодически. По характеру обработки данных ИС делятся на: информационносправочные или информационнопоисковые ИС в которых нет сложных алгоритмов обработки данных а целью системы является поиск и выдача информации...
39911. Информационные системы. Понятие, задачи и функции ИС 814.2 KB
  Также в достаточно широком смысле[2] трактует понятие информационной системы Федеральный закон РФ от 27 июля 2006 года № 149ФЗ Об информации информационных технологиях и о защите информации: информационная система совокупность содержащейся в базах данных информации и обеспечивающих ее обработку информационных технологий и технических средств[3]. Классификация по степени автоматизации По степени автоматизации ИС делятся на: автоматизированные: информационные системы в которых автоматизация может быть неполной то есть требуется...
39912. Модель парной линейной регрессии. Метод наименьших квадратов для оценки параметров уравнения регрессии и проверка его адекватности 210.22 KB
  Метод наименьших квадратов для оценки параметров уравнения регрессии и проверка его адекватности. Регрессии нелинейные по включенным переменным приводятся к линейному виду простой заменой переменных а дальнейшая оценка параметров производится с помощью метода наименьших квадратов. Выделяют следующие методы экстраполяции: среднего абсолютного прироста может быть выполнено в том случае если есть уверенность считать общую тенденцию линейной то есть метод основан на предположении о равномерном изменении уровня под равномерностью понимается...