97099

Ряды Фурье

Курсовая

Математика и математический анализ

Основные определения. Достаточные условия поточечной сходимости ряда Фурье. Ряд Фурье для четных и нечетных функций. Разложение в ряд Фурье общего вида. Разложение в ряд Фурье по косинусам. Разложение в ряд Фурье по синусам. Графики частичных сумм разложения в ряд Фурье общего вида. Графики частичных сумм разложения в ряд Фурье по косинусам.

Русский

2015-10-13

2.58 MB

4 чел.

МОСКОВСКИЙ АВИАЦИОННЫЙ ИНСТИТУТ

(НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

КУРСОВАЯ РАБОТА

ПО МАТЕМАТИЧЕСКОМУ АНАЛИЗУ

Ряды Фурье

Выполнил:

Жбанов Илья Михайлович

3О-103С

Проверил: Мартюшова Я.Г.

ст.преподаватель каф.804

Москва

2015г.

ОГЛАВЛЕНИЕ

ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

1. Основные определения_____________________________________3

2. Достаточные условия поточечной сходимости ряда Фурье_______4

3. Ряд Фурье для четных и нечетных функций____________________4

ПРАКТИЧЕСКАЯ ЧАСТЬ

1. Разложение в ряд Фурье общего вида_________________________6

2. Разложение в ряд Фурье по косинусам_______________________11

3. Разложение в ряд Фурье по синусам_________________________15

ПРИЛОЖЕНИЯ

1.Графики частичных сумм разложения в ряд Фурье общего вида__19

2. Графики частичных сумм разложения в ряд Фурье по косинусам_25

3. Графики частичных сумм разложения в ряд Фурье по синусам___31

СПИСОК ЛИТЕРАТУРЫ__________________________________37


ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

1. Основные определения

Пусть

Функциональный ряд ,  где

,

, n=0, 1,…

,

называется рядом Фурье функции f(x).

Обозначается

Функция y = f(x) называется кусочно-дифференцируемой на[a; b], если существует разбиение этого отрезка x0 = a < x1 < … < xn-1 < xn = b, такое что существуют                                                                                                                                                    и функции   принадлежат C1 [xi-1 ; xi] (то есть, имеют непрерывную производную на [xi-1 ; xi].


2. Достаточные условия поточечной сходимости ряда Фурье

Теорема Дирехле
       Если функция  
f определена на [a; b] и кусочно-дифференцируема на [a; b], то ряд Фурье функции f сходится в каждой точке x интервала (a; b) к значению ,  а в точках a и b – к значению  .

Если функция f – -периодическая и кусочно-дифференцируемая на промежутке длины периода, то ряд Фурье функции f сходится в любой точке x к значению  .

3. Ряд Фурье для четных и нечетных функций

Лемма Римана
       Если

Для  

Если               , n=0, 1, …
,
,
n=1, 2,…
и

Если  нечетная, то
,
n=0, 1,…
,
,
n=1, 2,…
и


ПРАКТИЧЕСКАЯ ЧАСТЬ

Постановка задания

Задание 1. Представить функцию рядом Фурье. Построить график суммы ряда. В MatLab построить графики частичных сумм ряда Фурье.

Задание 2. Разложить функцию в ряд Фурье по синусам кратных дуг. Построить график суммы ряда Фурье. В MatLab построить графики частичных сумм ряда Фурье.

Задание 3. Разложить функцию в ряд Фурье по косинусам кратных дуг. Построить график суммы ряда Фурье. В MatLab построить графики частичных сумм ряда Фурье.

Определим функцию по графику

1. Разложение в ряд Фурье общего вида

Рассмотрим функцию  


Доопределим функцию f1 на всю числовую прямую как -периодическую, где  на всю числовую прямую.


-периодическая, имеет на любом конечном промежутке конечное число точек разрыва первого рода, следовательно, ее можно представить рядом Фурье:

Так как при , то

 

 

 

  Функция f2 кусочно-дифференцируема, значит, существует конечная и непрерывная производная на каждом промежутке. Поэтому ряд Фурье сходится в любой точке числовой прямой.

 S(x) = f2(x) (x – точка непрерывности функции f2)

 (x – точка разрыва функции f2)



2. Разложение в ряд Фурье по косинусам

Рассмотрим функцию , то есть f1(x) – четная

Доопределим функцию f1 на всю числовую прямую как -периодическую, где


Так как f2 – четная, 2L - периодическая, имеет на любом конечном промежутке конечное число точек разрыва первого рода, следовательно, ее можно представить рядом Фурье:  

f2(x) = f(x), следовательно

Функция f2 кусочно-дифференцируема,  значит, существует конечная и непрерывная производная на каждом промежутке. Поэтому ряд Фурье сходится в любой точке числовой прямой.

 S(x) = f2(x) (x – точка непрерывности функции f2)

(x – точка разрыва функции f2)



3. Разложение в ряд Фурье по синусам

Рассмотрим функцию, то есть f1(x) – четная 

Доопределим функцию f1 на всю числовую прямую как -периодическую, где

Так как f2 – четная, 2L - периодическая, имеет на любом конечном промежутке конечное число точек разрыва первого рода, следовательно, ее можно представить рядом Фурье:  

f2(x) = f(x),, следовательно

 

Функция f2 кусочно-дифференцируема, значит, существует конечная и непрерывная производная на каждом промежутке. Поэтому ряд Фурье сходится в любой точке числовой прямой.

 S(x) = f2(x) (x – точка непрерывности функции f2)

(x – точка разрыва функции f2)


ПРИЛОЖЕНИЯ

1.Графики частичных сумм разложения в ряд Фурье общего вида

N=1


N=2


N=3


N=5


N=10


N=50


2. Графики частичных сумм разложения в ряд Фурье по косинусам

N=1


N
=2


N
=3


N
=5


N
=10


N
=50


3. Графики частичных сумм разложения в ряд Фурье по синусам

N=1


N
=2


N
=3


N
=5


N
=10


N
=50


СПИСОК ЛИТЕРАТУРЫ

1. Битюков Ю. И.

Лекции по математическому анализу

2. Зорич В. А.

Математический анализ (Часть 1)


 

А также другие работы, которые могут Вас заинтересовать

71878. Кадровое планирование 14.88 KB
  Во многом эффективность работы в научных коллективах зависит от правильного привлечения персонала. При этом необходимо рассматривать как действующий рынок труда, так и внешний. Важную роль играет подготовка резерва кадров, при этом необходимо учитывать такие факторы...
71879. Мотивация научных работников 15.4 KB
  Содержательные теории более просты возникли раньше и основываются на том что существуют внутренние побуждения потребности заставляющие человека действовать определенным образом: теория Маслоу двухфакторная теория Герцберга внешние гигиенические: з п уважительное отношение...
71882. Приоритетные направления исследований 13.72 KB
  Эти технологии носят межотраслевой характер имеют значение для развития многих отраслей. К приоритетным направлениям развития науки и техники в России относят информационные технологии электронику производственные технологии лазерные робототехника гибкие производственные...
71883. Исследовательские проекты 15.08 KB
  По этому критерию выделяют: модернизационные новаторские опережающие пионерные проекты. С точки зрения масштабности исследовательские проекты можно разделить на монопроекты выполняются одной организацией мультипроекты комплексные программы мегапроекты многоцелевые комплексные программы.
71884. Инновационный проект 17.81 KB
  Одной из форм инновационного проекта является исследовательский проект. Исследовательский проект – это выполнение исследований и разработок, направленных на решение актуальных теоретических и практических задач, имеющих социально-культурное, народнохозяйственное, политическое значение.
71886. Инновационная стратегия 15.26 KB
  В конечном счете весь аппарат выявлений закономерностей можно свести к пяти методам: Метод структурно-морфологического анализа – для выявления внутреннего состава предметной области для фиксации появления принципиально новых разработок.