97870

Демаскирующие признаки закладных устройств, индикаторы ЭМП, радиочастотомеры, интерсепторы (принципы действия и характеристики), методы поиска электронных закладных устройств с использованием приборов

Реферат

Информатика, кибернетика и программирование

Демаскирующие признаки электронных устройств перехвата информации. Обнаружение электронных устройств перехвата информации закладных устройств так же как и любых других объектов производится по их демаскирующим признакам. Каждый вид электронных устройств перехвата информации имеет свои демаскирующие признаки позволяющие обнаружить закладку.

Русский

2015-10-25

124 KB

5 чел.

Федеральное агентство по образованию

Государственное образовательное учреждение высшего профессионального образования

Уфимский Государственный Авиационный Технический Университет

Кафедра ТС

Реферат на тему:

«Демаскирующие признаки закладных устройств, индикаторы ЭМП, радиочастотомеры, интерсепторы (принципы действия и характеристики), методы поиска электронных закладных устройств с использованием приборов».

                                                                        Выполнил: студент гр. МТС-409Б

                                                                                  Рожанский А.П.

                                                         Проверил: Сухинец Ж.А.

                                                                                                            

Уфа 2009

1. Демаскирующие признаки электронных устройств перехвата информации.

Обнаружение электронных устройств перехвата информации (закладных устройств), так же как и любых других объектов, производится по их демаскирующим признакам.

Каждый вид электронных устройств перехвата информации имеет свои демаскирующие признаки, позволяющие обнаружить закладку.

Наиболее информативными признаками проводной микрофонной системы являются:

  •  тонкий провод неизвестного назначения, подключенный к малогабаритному микрофону (часто закамуфлированному и скрытно установленному) и выходящий в другое помещение;
  •  наличие в линии (проводе) неизвестного назначения постоянного (в несколько вольт) напряжения и низкочастотного информационного сигнала.

Демаскирующие признаки автономных некамуфлированных акустических закладок включают:

  •  признаки внешнего вида - малогабаритный предмет (часто в форме параллелепипеда) неизвестного назначения;
  •  одно или несколько отверстий малого диаметра в корпусе;
  •  наличие автономных источников питания (например, аккумуляторных батарей);
  •  наличие полупроводниковых элементов, выявляемых при облучении обследуемого устройства нелинейным радиолокатором;
  •  наличие в устройстве проводников или других деталей, определяемых при просвечивании его рентгеновскими лучами.

Камуфлированные акустические закладки по внешнему виду, на первый взгляд, не отличаются от объекта имитации, особенно если закладка устанавливается в корпус бытового предмета без изменения его внешнего вида. Такие закладки можно выявить путем разборки предмета.

Закладки, устанавливаемые в малогабаритные предметы, ограничивают возможности последних. Эти ограничения могут служить косвенными признаками закладных устройств. Чтобы исключить возможность выявления закладки путем ее разборки, места соединения разбираемых частей склеивают.

Некоторые камуфлированные закладные устройства не отличаются от оригиналов даже при тщательном внешнем осмотре. Их можно обнаружить только при просвечивании предметов рентгеновскими лучами.

В ряде случаев закамуфлированное закладное устройство обнаруживается по наличию в обследуемом предмете не свойственных ему полупроводниковых элементов (выявляемых при облучении его нелинейным радиолокатором). Например, обнаружение полупроводниковых элементов в пепельнице или в папке для бумаг может указать на наличие в них закладных устройств.

Наличие портативных звукозаписывающих и видеозаписывающих устройств в момент записи можно обнаружить по наличию их побочных электромагнитных излучений (излучений генераторов подмагничивания и электродвигателей).
Дополнительные демаскирующие признаки акустических радиозакладок:

  •  радиоизлучения (как правило, источник излучения находится в ближней зоне) с модуляцией радиосигнала информационным сигналом;
  •  наличие (как правило) небольшого отрезка провода (антенны), выходящего из корпуса закладки.

Вследствие того, что при поиске радиозакладок последние находятся в ближней зоне излучения и уровень сигналов о них, как правило, превышает уровень сигналов от других РЭС, у большинства радиозакладок обнаруживаются побочные излучения и, в частности, излучения на второй и третьей гармониках, субгармониках и т.д.

Дополнительные демаскирующие признаки сетевых акустических закладок:

  •  наличие в линии электропитания высокочастотного сигнала (как правило, несущая частота от 40 до 600 кГц, но возможно наличие сигнала на частотах до 7 МГц), модулированного информационным низкочастотным сигналом;
  •  наличие тока утечки (от единиц до нескольких десятков мА) в линии электропитания при всех отключенных потребителях;
  •  отличие емкости линии электропитания от типовых значений при отключении линии от источника питания (на распределительном щитке электропитания) и отключении всех потребителей.

Дополнительные демаскирующие признаки акустических и телефонных закладок с передачей информации по телефонной линии на высокой частоте:

  •  наличие в линии высокочастотного сигнала (как правило, несущая частота до 7 МГц) с модуляцией его информационным сигналом.

Дополнительные демаскирующие признаки телефонных радиозакладок:

  •  радиоизлучения с модуляцией радиосигнала информационным сигналом, передаваемым по телефонной линии;
  •  отличие сопротивления телефонной линии от " оо " при отключении телефонного аппарата и отключении линии (отсоединении телефонных проводов) на распределительной коробке (щитке);
  •  отличие сопротивления телефонной линии от типового значения (для данной линии) при отключении телефонного аппарата, отключении и закорачивании линии на распределительной коробке (щитке);
  •  падение напряжения (от нескольких десятых до 1,5...2 В) в телефонной линии (по отношению к другим телефонным линиям, подключенным к данной распределительной коробке) при положенной и поднятой телефонной трубке;
  •  наличие тока утечки (от единиц до нескольких десятков мА) в телефонной линии при отключенном телефоне.

Дополнительные демаскирующие признаки акустических закладок типа "телефонного уха":

  •  отличие сопротивления телефонной линии от " ? " при отключении телефонного аппарата и отключении линии (отсоединении телефонных проводов) на распределительной коробке (щитке);
  •  падение напряжения (от нескольких десятых до 1,5...2 В) в телефонной линии (по отношению к другим телефонным линиям, подключенным к данной распределительной коробке) при положенной телефонной трубке;
  •  наличие тока утечки (от единиц до нескольких десятков мА) в телефонной линии при отключенном телефоне;
  •  подавление (не прохождение) одного-двух вызывных звонков при наборе номера телефонного аппарата.

Дополнительные демаскирующие признаки полуактивных акустических радиозакладок:

  •  облучение помещения направленным (зондирующим) мощным излучением (как правило, гармоническим);
  •  наличие в помещении переизлученного зондирующего излучения с амплитудной или частотной модуляцией информационным акустическим сигналом.

2. Классификация методов и средств поиска электронных устройств перехвата информации

Поиск и обнаружение закладных устройств может осуществляться визуально, а также с использованием специальной аппаратуры: детекторов диктофонов и видеокамер, индикаторов поля, радиочастотомеров и интерсепторов, сканерных приемников и анализаторов спектра, программно-аппаратных комплексов контроля, нелинейных локаторов, рентгеновских комплексов, обычных тестеров, а также специальной аппаратуры для проверки проводных линий и т.д.

Метод поиска закладных устройств во многом определяется использованием той или иной аппаратуры контроля.

К основным методам поиска закладных устройств можно отнести:

  •  специальное обследование выделенных помещений;
  •  поиск радиозакладок с использованием индикаторов поля, радиочастотомеров и интерсепторов;
  •  поиск радиозакладок с использованием сканерных приемников и анализаторов спектра;
  •  поиск радиозакладок с использованием программно-аппаратных комплексов контроля;
  •  поиск портативных звукозаписывающих устройств с использованием детекторов диктофонов (по наличию их побочных электромагнитных излучений генераторов подмагничивания и электродвигателей);
  •  поиск портативных видеозаписывающих устройств с использованием детекторов видеокамер (по наличию побочных электромагнитных излучений генераторов подмагничивания и электродвигателей видеокамер);
  •  поиск закладок с использованием нелинейных локаторов;
  •  поиск закладок с использованием рентгеновских комплексов;
  •  проверка с использованием ВЧ-пробника (зонда) линий электропитания, радиотрансляции и телефонной связи;
  •  измерение параметров линий электропитания, телефонных линий связи и т.д.;
  •  проведение тестового "прозвона" всех телефонных аппаратов, установленных в проверяемом помещении, с контролем (на слух) прохождения всех вызывных сигналов АТС.

Простейшими и наиболее дешевыми обнаружителями радиоизлучений закладных устройств являются индикаторы электромагнитного поля, которые световым или звуковым сигналом сигнализируют о наличии в точке расположения антенны электромагнитного поля с напряженностью выше пороговой (фоновой). Более сложные из них - частотомеры обеспечивают, кроме того, измерение несущей частоты наиболее "сильного" в точке приема сигнала.

Для обнаружения излучений закладных устройств в ближней зоне могут использоваться и специальные приборы, называемые интерсепторами. Интерсептор автоматически настраивается на частоту наиболее мощного сигнала и осуществляет его детектирование. Некоторые интерсепторы позволяют не только производить автоматический или ручной захват радиосигнала, осуществлять его детектирование и прослушивание через динамик, но и определять частоту обнаруженного сигнала и вид модуляции.

Чувствительность обнаружителей поля мала, поэтому они позволяют обнаруживать излучения радиозакладок в непосредственной близости от них.

Существенно лучшую чувствительность имеют специальные (профессиональные) радиоприемники с автоматизированным сканированием радиодиапазона (сканерные приемники или сканеры). Они обеспечивают поиск в диапазоне частот, перекрывающем частоты почти всех применяемых радиозакладок - от десятков кГц до единиц ГТц. Лучшими возможностями по поиску радиозакладок обладают анализаторы спектра. Кроме перехвата излучений закладных устройств они позволяют анализировать и их характеристики, что немаловажно при обнаружении радиозакладок, использующих для передачи информации сложные виды сигналов.

Возможность сопряжения сканирующих приемников с переносными компьютерами послужило основой для создания автоматизированных комплексов для поиска радиозакладок (так называемых программно-аппаратных комплексов контроля). Кроме программно-аппаратных комплексов, построенных на базе сканирующих приемников и переносных компьютеров, для поиска закладных устройств используются и специально разработанные многофункциональные комплексы, такие, например, как "OSCOR-5000".

Специальные комплексы и аппаратура для контроля проводных линий позволяют проводить измерение параметров (напряжений, токов, сопротивлений и т.п.) телефонных, слаботочных линий и линий электропитания, а также выявлять в них сигналы закладных устройств.

Обнаружители пустот позволяют обнаруживать возможные места установки закладных устройств в пустотах стен или других деревянных или кирпичных конструкциях.

Большую группу образуют средства обнаружения или локализации закладных устройств по физическим свойствам элементов электрической схемы или конструкции. Такими элементами являются: полупроводниковые приборы, которые применяются в любых закладных устройствах, электропроводящие металлические детали конструкции и т.д. Из этих средств наиболее достоверные результаты обеспечивают средства для обнаружения полупроводниковых элементов по их нелинейным свойствам - нелинейные радиолокаторы.

Принципы работы нелинейных радиолокаторов близки к принципам работы радиолокационных станций, широко применяемых для радиолокационной разведки объектов. Существенное отличие заключается в том, что если приемник радиолокационной станции принимает отраженный от объекта зондирующий сигнал (эхо-сигнал) на частоте излучаемого сигнала, то приемник нелинейного локатора принимает 2-ю и 3-ю гармоники отраженного сигнала. Появление в отраженном сигнале этих гармоник обусловлено нелинейностью характеристик полупроводников.

Металлоискатели (металлодетекторы) реагируют на наличие в зоне поиска электропроводных материалов, прежде всего металлов, и позволяют обнаруживать корпуса или другие металлические элементы закладки.

Переносные рентгеновские установки применяются для просвечивания предметов, назначения которых не удается выявить без их разборки прежде всего тогда, когда она невозможна без разрушения найденного предмета.

3. Индикаторы электромагнитного поля, радиочастотомеры и интерсепторы. 

Индикаторы электромагнитного поля (далее индикаторы поля) позволяют обнаруживать излучающие закладные устройства, использующие для передачи информации практически все виды сигналов, включая широкополосные шумоподобные и сигналы с псевдослучайной скачкообразной перестройкой несущей частоты.

Принцип действия приборов основан на интегральном методе измерения уровня электромагнитного поля в точке их расположения. Наведенный в антенне и продетектированный сигнал усиливается, и в случае превышения им установленного порога срабатывает звуковая или световая сигнализация.

Коэффициент усиления в большинстве известных индикаторов поля регулируется с помощью переменного резистора, изменение сопротивления которого обеспечивается регулятором чувствительности на кожухе прибора. Индикаторы оповещают оператора о наличии электромагнитного поля с уровнем напряженности выше некоторого порогового значения, устанавливаемого регулятором чувствительности. Ряд индикаторов поля позволяет определять относительный уровень сигнала по стрелочному, жидкокристаллическому или световому индикаторам. Световые индикаторы, как правило, выполняют в виде линейки из 4 ... 10 светодиодов, каждый последующий из которых загорается при повышении уровня сигнала в соответствии с линейной или логарифмической шкалой.

Некоторые индикаторы поля дополняются специальным блоком, включающим амплитудный детектор (АД), усилитель низкой частоты (УНЧ) и громкоговоритель, что позволяет прослушивать детектированный сигнал. Так как у ряда радиозакладок, использующих частотную модуляцию сигнала, имеется и паразитная амплитудная модуляция сигнала, наличие данного блока позволяет отселектировать сигнал закладки на фоне других радиосигналов при прослушивании через динамик информационного (тестового) акустического сигнала.

Использование в обнаружителе амплитудного детектора, усилителя низкой частоты и динамика позволяет реализовать эффект так называемой акустической “завязки”. Суть акустической “завязки” состоит в следующем.

При подаче продетектированного и усиленного сигнала на громкоговоритель между ним и микрофоном закладки образуется положительная обратная акустическая связь. При приближении индикатора поля к закладке на близкое расстояние возникает режим самовозбуждения низкочастотного усилителя индикатора, аналогичный режиму самовозбуждения в обычных системах звукоусиления, когда микрофон близко подносят к звуковым колонкам. При этом появляется характерный акустический сигнал, похожий на свист, информирующий оператора о наличии вблизи индикатора поля акустической закладки. Чем выше громкость сигнала громкоговорителя, тем на большем расстоянии от закладки наблюдается режим самовозбуждения усилителя. С уменьшением громкости это расстояние уменьшается. Необходимо отметить, что у профессиональных радиозакладок с частотной модуляцией сигнала практически отсутствует паразитная амплитудная модуляция и эффект акустической “завязки” не наблюдается.

Некоторые современные радиочастотные детекторы позволяют осуществлять детектирование амплитудно- и частотно-модулированных сигналов, а также селектировать сигналы в ближней зоне.

В результате дальнейшего развития индикаторов поля созданы широкополосные радиоприемные устройства – интерсепторы. Приборы автоматически настраиваются на частоту наиболее мощного радиосигнала (как правило, уровень этого сигнала на 15 ... 20 дБ превышает все остальные) и осуществляют его детектирование.

Принцип “захвата” частоты радиосигнала с максимальным уровнем и последующим анализом его характеристик микропроцессором положен в основу работы современных портативных радиочастотомеров. Микропроцессор производит запись сигнала во внутреннюю память, цифровую фильтрацию, проверку на стабильность и когерентность.

Для обнаружения работающих диктофонов применяются так называемые детекторы диктофонов, которые являются детекторными приемниками магнитного поля. Принцип действия приборов основан на обнаружении слабого магнитного поля, создаваемого генератором подмагничивания или работающим двигателем диктофона в режиме записи. ЭДС, наводимая этим полем в датчике сигналов (магнитной антенне), усиливается и выделяется из шума специальным блоком обработки сигналов. Превышение уровня принятого сигнала некоторого установленного порогового значения сигнализируется. Во избежание ложных срабатываний порог обнаружения необходимо корректировать практически перед каждым сеансом работы, что является недостатком подобных приборов.

Аналогично детекторам диктофонов работают и детекторы видеокамер.

Сканерные приемники и анализаторы спектра. Для первоначальной записи частотного спектра приемник осуществляет сканирование рабочего диапазона четыре раза подряд в течение 24 с (время скани-рования спектрального диапазона составляет 6 с). Оператор имеет возможность произвести анализ записанных в память сигналов. В последующем приемник переводится в автоматический режим работы. При каждом сканировании производится сравнение обнаруженных и записанных в “долговременную” память сигналов. При выявлении нового сигнала срабатывает сигнализация, и этот сигнал записывается в блок памяти новых сигналов для последующей проверки. После анализа новых сигналов их можно записать в долговременную память в режиме обновления спектра (добавления новых сигналов).

Программно-аппаратные и специальные комплексы контроля. Существенное преимущество перед остальными получают сканерные приемники, имеющие возможность работы под управлением компьютера. Использование внешней ПЭВМ с программным обеспечением позволяет автоматизировать процесс поиска и обнаружения закладных устройств.

Высокая степень автоматизации позволяет проводить анализ радиоэлектронной обстановки (РЭО) по районам контроля, вести базу радиоэлектронных средств (РЭС) и использовать ее для эффективного обнаружения радиозакладок, в том числе при кратковременных сеансах их работы, например, при использовании радиозакладок с дистанционным управлением, промежуточным накоплением информации (разделением этапов съема и передачи информации) и полуактивных закладных устройств.

Система обнаружения излучений (СОИ) предназначена для обнаружения и локализации радиозакладок и других источников излучений внутри помещений. В состав системы входят блок регистрации и датчики излучения, число которых зависит от размеров помещения. В состав системы может входить от 2 до 20 датчиков,

Датчик излучения представляет собой широкополосный приемник, работающий в диапазоне частот от 0,1 до 10 000 МГц.

При превышении уровня электромагнитного поля вблизи датчика порогового значения срабатывает световая сигнализация. Например, дальность обнаружения датчиком сотового телефона составляет 10 ... 15 м.

Средства контроля проводных линий предназначены для выявления, идентификации и определения местоположения закладных устройств, подключаемых к проводным линиям, включая электросеть, телефонные кабели, линии селекторной связи, пожарной сигнализации и т.п.

Работа таких средств контроля основана на следующих принципах:

– измерении электрических параметров линии (амплитуд напряжения и тока в линии, а также значений емкости и индуктивности линии, активного и реактивного сопротивления);

– обнаружении в линии низкочастотного информационного (тестового) сигнала;

– обнаружении в линии сигнала высокочастотного навязывания;

– обнаружении в линии высокочастотного сигнала, модулированного низкочастотным информационным (тестовым) сигналом;

– обнаружении мест подключения средств съема информации методом локации (в том числе и нелинейной) проводной линии.

Для измерения параметров линий могут использоваться как обычные, так и специально разработанные для этих целей измерительные устройства, имеющие в своем составе специальные адаптеры для подключения к линиям различного типа.

Для обнаружения в линии низкочастотных информационных (тестовых) сигналов используются специальные низкочастотные усилители, а для обнаружения высокочастотных сигналов – специальные приемники или детекторы.

Специально разработанные средства контроля проводных линий, как правило, совмещают в себе почти все функции этих устройств. Исключение составляют специальные средства контроля телефонных линий связи.

Для обнаружения подключений к линии средств съема информации и определения мест подключения используются локаторы проводных линий, принцип работы которых аналогичен принципам работы обычных радиолокаторов. Отличие состоит только в том, что зондирующий сигнал не излучается, а подается в линию. По измененным параметрам отраженного сигнала можно судить о характере гальванически подключаемого к линии закладного устройства. При использовании нелинейного локатора проводных линий отраженный сигнал принимается на частоте второй гармоники зондирующего сигнала, что позволяет минимизировать ложные обнаружения.

Переносные рентгеновские установки применяют для просмотра предметов неизвестного назначения, а также анализа выявленных в стенах пустот. Методика обнаружения закладных устройств с использованием рентгеновских комплексов следующая. Обследуемый предмет (или стена) размещается между излучателем (рентгеновским аппаратом) и просмотровой приставкой (устройством для визуализации) или рентгено-телевизионном преобразователем, при этом плоскость экрана преобразователя должна находиться как можно ближе к контролируемому предмету.

Окно излучателя запрещается направлять в сторону операторов.

При включении рентгеновского аппарата изображение предмета наблюдается оператором на флюорографическом или телевизионном экранах. На рентгеновском изображении по характерным видовым признакам распознаются элементы электронных устройств: печатные платы, микросхемы, диоды, транзисторы, конденсаторы, соединительные проводники и т.д.

Если обследуемый предмет не содержит элементы электронных устройств (например, пепельница, зажигалка, ваза и т.д.), то обнаружение последних однозначно свидетельствует о наличии встроенных в предмет закладных устройств.

Сложнее обстоит дело с обнаружением закладных устройств в электронных приборах, например, ПЭВМ, телевизоре или телефонном аппарате. В этом случае необходимо иметь рентгеновские снимки основных блоков и печатных плат обследуемых устройств в типовом исполнении. Выявление закладных устройств осуществляется в результате визуального сравнения и выявления различий имеющихся рентгеновских снимков (изображений) типовых блоков (или печатных плат) с реально наблюдаемыми изображениями. Проведение данного вида работ требует высокой подготовки и большого опыта работы оператора.

Из переносных рентгеновских установок наиболее целесообразно использовать рентгенотелевизионные комплексы, так как последние обладают большей степенью защиты персонала от облучения, позволяют проводить дополнительную обработку и запоминание изображений и осуществлять (при сопряжении с ПЭВМ) автоматическое сравнение получаемых изображений с эталонными, хранящимися в базе данных.

Радиационная безопасность операторов, эксплуатирующих рентгенотелевизионные установки, обеспечивается прежде всего выбором максимально возможных расстояний между излучателем и оператором, а также использованием естественных и искусственных защитных преград.

Целесообразно размещение рентгеновского излучателя и рентгено-телевизионного преобразователя в одном помещении, а остальных блоков – в другом. В этом случае при наличии между помещениями глухой стены толщиной не менее 0,5 кирпича число включений рентгенотелевизионной установки не ограничивается [1] .

Дозовые пределы облучения операторов в соответствии с Нормами радиационной безопасности (НРБ-96) не должны превышать 20мЭв (2 рентгена) в год для операторов, входящих в категорию А (профессиональные работники), и 1мЭв (0,1 рентгена) в год – для операторов категорий “лица из населения”. Например, при эксплуатации установки “Рона” в течение года одним оператором (входящим в категорию А), находящимся на расстоянии 5 м сбоку от излучателя, предельное число включений установки не должно превышать 2000 мЭв в год.

Литература

1. Хорев А.А. Способы и средства защиты информации. М.: МО РФ, 1996.

2. Хорев А.А. Защита информации от утечки по техническим каналам. Часть 1. Технические каналы утечки информации: Учебное пособие. М.: Гостехкомиссия РФ, 1998.

3. Интернет-ресурсы.


 

А также другие работы, которые могут Вас заинтересовать

1457. Производство инженерно-геологических работ на предприятии обогатительная фабрика ОАО Лебединский ГОК 190 KB
  Целью проведенных изысканий являлось изучить инженерно-геологических условий площадки: геолого-литологического строения, гидрогеологических условий, физико-механических свойств грунтов и получить другую информацию, необходимую для технически обоснованных решений при проектировании оснований и фундаментов.
1458. ЛЕЧЕБНАЯ ГИМНАСТИКА ПРИ ПОЯСНИЧНОМ ОСТЕОХОНДРОЗЕ ПОЗВОНОЧНИКА 281.32 KB
  Остеохондроз позвоночника встречается относительно часто и по количеству дней нетрудоспособности занимает среди всех болезней человека третье место после гриппа и травм.
1459. Використання ГІС при грошовій оцінці земель населених пунктів (досвід інституту Діпромісто) 282.67 KB
  За останній час грошова оцінка населених пунктів України перетворилась у вид робіт, в яких найбільш повно та ефективно використовуються ГІС-технології.
1460. Базисные средства манипулирования реляционными данными 296.22 KB
  Теоретико-множественные операции. Реляционное исчисление(далее–РИ) базируется на математической логике, точнее, на исчислении предикатов 1-го порядка. Реляционная алгебра, базовые механизмы манипулирования РД.
1461. Виды диаграмм летучесть-состав для расчета растворимости газов в жидкостях 319.14 KB
  Для расчёта диаграмм выбрано трёхпараметрическое кубическое уравнение состояния. Проанализированы области нестабильных состояний бинарной системы и выявлены новые качественные виды зависимостей летучестей компонентов от состава бинарной системы. Использование особенностей диаграмм летучесть состав позволяет находить начальные приближения для решения задач растворимости газов в жидкостях.
1462. Потребительские предпочтения в области нижнего белья, и как следствие, отношение к бренду 951.5 KB
  История создания нижнего белья. Тенденции развития рынка. Разработка технического задания и плана исследования. Маркетинговые исследования потребителей. Анализ социально – демографических факторов. Анализ ответов респондентов на вопросы анкеты.
1463. ПЕРЕДАЧА ПРАГМАТИЧЕСКОЙ СОСТАВЛЯЮЩЕЙ ОБРАЗНЫХ ФРАЗЕОЛОГИЧЕСКИХ ЕДИНИЦ В ПУБЛИЦИСТИЧЕСКОМ ТЕКСТЕ 319.71 KB
  Определить место и роль контекста в выявлении наиболее полной реализации прагматического потенциала ФЕ. Сопоставить прагматическую составляющую образных фразеологических единиц в английском и русском языках.
1464. КАТЕГОРИЯ ИНТЕРДИСКУРСИВНОСТИ В НАУЧНО- ДИДАКТИЧЕСКОМ ТЕКСТЕ 320.83 KB
  Целью исследования является создание классификации маркеров интердискурсивности и их выявление в текстах лекций на немецком и русском языках.
1465. Конфликтология 321.32 KB
  Методические указания по изучению дисциплины. Содержание разделов дисциплины. Методические рекомендации студентам по организации изучения дисциплины. Прогнозирование и профилактика конфликтов. Трудовые конфликты и пути их разрешения.