98255

Отличие нечеткой логики от традиционной логики

Реферат

Логика и философия

В нечеткой логике в отличие от классической вместо величин истина и ложь используется величина степень истинности принимающая любые значения из бесконечного множества от 0 до 1 включительно. Нечеткие множества Пусть E - универсальное множество x - элемент E а R - определенное свойство.

Русский

2015-10-30

52.5 KB

1 чел.

Министерство образования и науки Российской Федерации

Федеральное государственное автономное образовательное учреждение высшего профессионального образования

«Национальный исследовательский ядерный университет «МИФИ»

Волгодонский инженерно-технический  институт –

филиал  федерального государственного автономного образовательного учреждения высшего       профессионального образования «Национальный исследовательский ядерный университет «МИФИ»

(ВИТИ НИЯУ МИФИ)

ФАКУЛЬТЕТ  Атомной энергетики и управления

КАФЕДРА   Информационных и управляющих систем

НАПРАВЛЕНИЕ ПОДГОТОВКИ  Системный анализ и управление

РЕФЕРАТ

ПО ДИСЦИПЛИНЕ  Теория принятия решений в условиях неопределенности

ВЫПОЛНИЛ МАГИСТРАНТ

Пестова Ольга Александровна,   гр.  САУ-14-ДМ                                                             .

фамилия, имя, отчество, группа, подпись

 

ПРИНЯЛ ПРЕПОДАВАТЕЛЬ

Виниченко Михаил  Юрьевич, к.т.н., доцент                                                                    .                           фамилия, имя, отчество, ученая степень, ученое звание, должность, подпись

Волгодонск

2015

Отличие нечеткой логики от традиционной логики

В нечеткой логике, в отличие от классической, вместо величин истина и ложь используется величина степень истинности, принимающая любые значения из бесконечного множества от 0 до 1 включительно. Следовательно логические операции уже нельзя представить таблично. В нечеткой логике они задаются фукнциями.

Нечеткая логика (fuzzy logic) - это надмножество классической булевой логики. Она расширяет возможности классической логики, позволяя применять концепцию неопределенности в логических выводах. Употребление термина "нечеткий" применительно к математической теории может ввести в заблуждение. Более точно ее суть характеризовало бы название "непрерывная логика". Аппарат нечеткой логики столь же строг и точен, как и классический, но вместе со значениями "ложь" и "истина" он позволяет оперировать значениями в промежутке между ними. Говоря образно, нечеткая логика позволяет ощущать все оттенки окружающего мира, а не только чистые цвета.

Использование нечеткой логики принципиально упрощает решение многих задач. Во-первых, значительно проще и понятнее математический аппарат решения этих задач. Во-вторых, гораздо легче создать механизм адаптации подобной системы к изменяющимся входным параметрам. В-третьих, появляется возможность оперирования не только собственно значениями данных, но и степенью их достоверности.

Перечислим преимущества fuzzy-систем по сравнению с другими:

возможность оперировать нечеткими входными данными: например, непрерывно изменяющиеся во времени значения (динамические задачи), значения, которые невозможно задать однозначно (результаты статистических опросов, рекламные компании и т.д.);

возможность нечеткой формализации критериев оценки и сравнения: оперирование критериями "большинство", "возможно", преимущественно" и т.д.;

возможность проведения качественных оценок как входных данных, так и выходных результатов: вы оперируете не только значениями данных, но и их степенью достоверности (не путать с вероятностью!) и ее распределением;

возможность проведения быстрого моделирования сложных динамических систем и их сравнительный анализ с заданной степенью точности: оперируя принципами поведения системы, описанными fuzzy-методами, вы во-первых, не тратите много времени на выяснение точных значений переменных и составление описывающих уравнений, во-вторых, можете оценить разные варианты выходных значений.

Нечеткие множества

Пусть E - универсальное множество, x - элемент E, а R - определенное свойство. Обычное (четкое) подмножество A универсального множества E, элементы которого удовлетворяют свойство R, определяется как множество упорядоченной пары A = {A (х)/х}, где A(х) - характеристическая функция, принимающая значение 1, когда x удовлетворяет свойство R, и 0 - в другом случае.

Нечеткое подмножество отличается от обычного тем, что для элементов x из E нет однозначного ответа "нет" относительно свойства R. В связи с этим, нечеткое подмножество A универсального множества E определяется как множество упорядоченной пари A = {A(х)/х}, где A(х) - характеристическая функция принадлежности (или просто функция принадлежности), принимающая значение в некотором упорядоченном множестве M (например, M = [0,1]).

Функция принадлежности указывает степень (или уровень) принадлежности элемента x к подмножеству A. Множество M называют множеством принадлежностей. Если M = {0,1}, тогда нечеткое подмножество A может рассматриваться как обычное или четкое множество.

Рассмотрим множество X всех чисел от 0 до 10. Определим подмножество A множества X всех действительных чисел от 5 до 8.

A = [5,8]

Покажем функцию принадлежности множества A, эта функция ставит в соответствие число 1 или 0 каждому элементу в X, в зависимости от того, принадлежит данный элемент подмножеству A или нет. Результат представлен на следующем рисунке:

Можно интерпретировать элементы, соответствующие 1, как элементы, находящиеся в множестве A, а элементы, соответствующие 0, как элементы, не находящиеся в множестве A.

Эта концепция используется в многих областях. Но существуют ситуации, в которых данной концепции будет не хватать гибкости.

В данном примере опишем множество молодых людей. Формально можно записать так

B = {множество молодых людей}

Поскольку, вообще, возраст начинается с 0, то нижняя граница этого множества должна быть нулем. Верхнюю границу определить сложнее. Сначала установим верхнюю границу, скажем, равную 20 годам. Таким образом, имеем B как четко ограниченный интервал, буквально: B = [0,20]. Возникает вопрос: почему кто-то в свой двадцатилетний юбилей - молодой, а сразу на следующий день уже не молодой? Очевидно, это структурная проблема, и если передвинуть верхнюю границу в другую точку, то можно задать такой же вопрос.

Более естественный путь создания множества B состоит в ослаблении строгого деления на молодых и не молодых. Сделаем это, вынося не только четкие суждения "Да, он принадлежит множеству молодых людей" или "Нет, она не принадлежит множеству молодых людей", но и гибкие формулировки "Да, он принадлежит к довольно молодым людям" или "Нет, он не очень молодой".

Рассмотрим как с помощью нечеткого множества определить выражение "он еще молодой".

В первом примере мы кодировали все элементы множества с помощью 0 ли 1. Простым способом обобщить данную концепцию является введение значений между 0 и 1. Реально можно даже допустить бесконечное число значений между 0 и 1, в единичном интервале I = [0, 1].

Интерпретация чисел при соотношении всех элементов множества становится теперь сложнее. Конечно, число 1 соответствует элементу, принадлежащему множеству B, а 0 означает, что элемент точно не принадлежит множеству B. Все другие значения определяют степень принадлежности к множеству B.

Для наглядности приведем характеристическую функцию множества молодых людей, как и в первом примере.

Пусть E = {x1, x2, x3, x4, x5 }, M = [0,1]; A - нечеткое множество, для которого A(x1)=0,3; A(x2)=0; A(x3)=1; A(x4)=0,5; A(x5)=0,9

Тогда A можно представить в виде:

A = {0,3/x1; 0/x2; 1/x3; 0,5/x4; 0,9/x5 } или

A = 0,3/x1 + 0/x2 + 1/x3 + 0,5/x4 + 0,9/x5,

(знак "+" является операцией не сложения, а объединения)

 

x1

x2

x3

x4

x5

A =

0,3

0

1

0,5

0,9


Сегодня элементы нечеткой логики можно найти в десятках промышленных изделий - от систем управления электропоездами и боевыми вертолетами до пылесосов и стиральных машин. Без применения нечеткой логики немыслимы современные ситуационные центры руководителей западных стран, где принимаются ключевые политические решения и моделируются разные кризисные ситуации.


 

А также другие работы, которые могут Вас заинтересовать

58904. ВИХОВНА ГОДИНА. СИМВОЛИ РІДНОЇ БАТЬКІВЩИНИ 199.5 KB
  Юнак Тризуб можна зустріти і на цеглинах підмурків Десятинної церкви у Києві і на плитах Успенської церкви у Володимир-Волинському що збудована в другій половині XI століття.
58905. Собори душ своїх бережіть, друзі 46.5 KB
  Мета уроку: допомогти учням осмислити роль і місце собору у долі людей; ствердити думку про те що собор у романі символ духовної краси людини її особистої причетності до історичного буття народу і людства в цілому; розкрити філософське значення роману...
58906. Поспішай творити добро 64 KB
  Обладнання: записи висловів видатних людей про добро приказок та приповідок учнівські твори та вірші картки із запитаннями для підсумкової розповіді. Тренінг Риси хорошої людини; технологія Мікрофон Народний золотослів про добро вислови видатних людей про добро і доброту;...
58907. Знайомство з собою. Година спілкування 86 KB
  Мета: познайомитись з учнями надати їм можливість поринути у власний внутрішній світ вчити бачити в оточуючих людях позитив формувати соціальну компетентність засобами ігрового спілкування. З чим ви згодні а з чим ні Чи цікаво вам побачити себе з іншого боку...
58908. Урок-гра. Гімнастика 50 KB
  Ходьба: звичайна підняти руки через сторони вгору вдих опустити руки видох 1хв Переходимо на крок Дихаємо як вітерок. руки на поясі. руки до плечей. руки перед грудьми зігнуті у ліктях.
58909. Дзвони Великодня 58.5 KB
  На дошці висить килим а на ньому образ Ісуса Христа українська хата піч писанки кошики паска іграшковий коник квіти. 1учень Ойвесна веснаднем красна Що ж ти весно принесла Весна Принесла я вам світле свято довгождане Воскресіння...
58912. Тиск і сила тиску. Одиниці тиску 50 KB
  Мета: сформувати в учнів поняття про тиск як про фізичну величину; дослідити на уроці залежність тиску від сили тиску та від площі поверхні; навчати розв’язувати задачі на тиск та застосовувати знання про тиск у повсякденному житті...