98271

Виды пожарных насосов и их характеристики

Реферат

Безопасность труда и охрана жизнедеятельности

Из всего многообразия пожарно-технического вооружения насосы представляют наиболее важный и сложный их вид. В пожарных автомобилях различного назначения используется разнообразная номенклатура насосов, работающих по различным принципам.

Русский

2015-10-30

7.02 MB

58 чел.

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ КАЗЕННОЕ УЧРЕЖДЕНИЕ

«СПЕЦИАЛЬНОЕ УПРАВЛЕНИЕ ФЕДЕРАЛЬНОЙ ПРОТИВОПОЖАРНОЙ СЛУЖБЫ №30

МИНИСТЕРСТВО РОССИЙСКОЙ ФЕДЕРАЦИИ

ПО ДЕЛАМ ГРАЖДАНСКОЙ ОБОРОНЫ,

ЧРЕЗВЫЧАЙНЫМ СИТУАЦИЯМ И ЛИКВИДАЦИИ ПОСЛЕДСТВИЙ

СТИХИЙНЫХ БЕДСТВИЙ»

СПЕЦИАЛЬНАЯ ПОЖАРНО - СПАСАТЕЛЬНАЯ ЧАСТЬ № 10

РЕФЕРАТ

Тема: «Виды пожарных насосов и их характеристики».

                        Выполнил:

                                      водитель СПСЧ-10

                                        сержант вн. службы

                             Халиков М.Р.

Камбарка 2015

Оглавление:

1. Основные определения и классификация насосов

2. Объемные насосы

3. Струйные насосы

4. Пожарные центробежные насосы серии ПН

5. Пожарные центробежные насосы (ПЦН)

6. Вакуумные системы пожарных насосов

7. Неисправности центробежных насосов и их обслуживание

ПОЖАРНЫЕ  НАСОСЫ

Из всего многообразия пожарно-технического вооружения насосы представляют наиболее важный и сложный их вид. В пожарных автомобилях различного назначения используется разнообразная номенклатура насосов, работающих по различным принципам. Насосы, прежде всего, обеспечивают подачу воды на тушение пожаров, работу таких сложных механизмов, как автолестницы и коленчатые подъемники. Насосы применяются во многих вспомогательных системах, таких, как вакуумные системы,
гидроэлеваторы и др. Широкое применение насосов обусловлено не только
их устройством, но и рабочими характеристиками, особенностями режимов их работы, это обеспечивает эффективное применение их для тушения пожаров.

2.1. Основные определения и классификация насосов

Первое упоминание о насосах относится к IIIIV вв. до нашей эры. В это время грек Ктесибий предложил поршневой насос. Однако точно не известно использовался ли он для тушения пожаров.

Изготовление поршневых пожарных насосов с ручным приводом осуществлялось в XVIII в. Пожарные насосы с приводом от паровых машин производились в России уже в 1893 г.

Идея использовать центробежные силы для перекачки воды была высказана Леонардо да Винчи (1452 – 1519 гг.), теория же центробежного насоса была обоснована членом Российской Академии наук Леонардом Эйлером (1707 – 1783 гг.).

Создание центробежных насосов интенсивно развивалось во второй половине XIX в. В России разработкой центробежных насосов и вентиляторов занимался инженер А.А. Саблуков (1703 – 1857 гг.) и уже в 1840 г. им был разработан центробежный насос. В 1882 г. был произведен образец центробежного насоса для Всероссийской промышленной выставки. Он подавал 406 ведер воды в минуту.

В создание отечественных гидравлических машин, в том числе
насосов, большой вклад внесли советские ученые И.И. Куколевский,
С.С. Руднев, А.М. Караваев и др.

Пожарные центробежные насосы отечественного производства устанавливались на первых пожарных автомобилях (ПМЗ-1, ПМГ-1 и др.) уже в 30-х гг. прошлого столетия.

Исследования в области пожарных насосов на протяжении многих лет проводились во ВНИИПО и ВИПТШ.

В настоящее время на пожарных машинах применяются насосы различных типов (рис. 2.1). Они обеспечивают подачу огнетушащих веществ, функционирование вакуумных систем, работу гидравлических систем управления.

НАСОСЫ

ПОДАЧА ОВ

ВАКУУМНЫЕ СИСТЕМЫ

ГИДРАВЛИЧЕСКИЕ СИСТЕМЫ

Центробежные

Струйные

Шестеренные

Струйные

Шиберные

Поршневые

Водокольцевые

Шестеренные

Аксиально-поршневые

Работа всех насосов с механическим приводом характеризуется двумя процессами: всасывания и нагнетания перекачиваемой жидкости. При этом насос любого типа характеризуется величиной подачи жидкости, развиваемой напором, высотой всасывания и величиной коэффициента полезного действия.

 Подачей насоса называется объем жидкости, перекачиваемой в единицу времени, Q, л/с. Напором насоса называется разность удельных энергий жидкости после и до насоса. Его величину измеряют в метрах водяного столба, Н, м. Для выяснения сущности определения напора рассмотрим схему работы насосной установки (рис. 2.2). На основании уравнения Бернулли запишем

е2 - е1 = (z2  z1) + ,                             

где е2 и е1 – энергия на входе и выходе из насоса;  Р2 и  Р1 – давление жидкости в напорной и всасывающей полости, Па;  ρ – плотность жидкости, кг/м3; v2 и v1 – скорость жидкости на выходе и входе в насос, м/с; g – ускорение свободного падения, м/с. Разность z2 и z1, а также невелики, поэтому для практических расчетов ими пренебрегают.

Значения и выразим через показания манометра Нман и вакуумметра Нвак на насосе, измеренные в м вод. ст.

   и      .                                

Рис. 2.2. Схема насосной установки:

1 – насос; 2 – всасывающий патрубок; 3 – коллектор; 4 – напорная задвижка; 5 – рукавная линия; 6 – ствол

6

5

4

3

1

2

Нств

hвс

Нг

Н0

 hн

z1

z2

На основании изложенного напор Н насоса приближенно оценивают как сумму показаний манометра и вакуумметра:

Н = Нман + Нвак.                                           

В этой формуле знак «плюс» ставят, если во всасывающей полости вакуум, т.е. при работе с открытого водоисточника. В случае  забора воды из водопроводной сети или при работе последовательно включенных насосов ставят знак «минус».

В соответствии с рис. 2.2 напор, развиваемый насосом Н, должен обеспечить подъем воды на высоту Нг, преодолеть сопротивления во всасывающей hвс  и напорной линии hн и обеспечить требуемый напор на стволе Нств. Тогда можно записать

Н = Нг  + hвс + hн + Нств.    

Потери во всасывающей и напорной линиях определяют по формуле

hвс = Sвс Q2    и   hн = Sн Q2,   

где Sвс и Sн – коэффициенты сопротивления линий всасывания и нагнетания.

На практике используют понятие «напор на насосе» – это манометрический напор. Он равен

Нман = Нпод  + hн + Нств

Эффективная мощность, Вт, насоса расходуется на совершение работы по перемещению определенного объема жидкости с плотностью ρ на высоту Н, м:

Ne = ρgQH.                                             

Мощность, потребляемая насосом, равна

 

Полный КПД η насоса определяют по формуле

η = ηо ηг ηм,   

где ηо , ηг  и ηм – КПД объемный, гидравлический и механический.

    Центробежные насосы обладают рядом достоинств. При постоянной скорости вала насоса nном,  об/мин, изменяя подачу Q, л/с, в широких пределах (до 10 раз), напор Н, м, развиваемый им, изменяется на 10–15 %. Следовательно, напор при изменении подачи всегда будет достаточно высоким. Центробежные насосы подают жидкость равномерно без пульсаций. Важным является и то, что они способны работать «на себя». При перекрытии ствола, засорении его или заломе напорных рукавов насос не выключается.

Центробежные насосы не требуют сложного привода от двигателя, надежны в работе и просты в управлении. Существенным их недостатком является то, что они не могут забирать воду из открытых водоисточников. Поэтому их оборудуют специальными вакуумными системами с ручным или автоматическим включением.

К центробежным насосам для целей пожаротушения предъявляется ряд специфических требований. Они должны обеспечивать подачу воды и водных растворов пенообразователя с водородным показателем рН от 7 до 10 плотностью 1010 кг/м3 и массовой концентрацией твердых частиц до
0,5 % при их максимальном размере 3 мм. Насос может потреблять не более 70 % мощности, развиваемой двигателем, расположенным на шасси, и обеспечивать работу непрерывно в течение 6 ч при любых температурах окружающей среды.

Струйные и объемные насосы, применяемые на пожарных автомобилях, должны обеспечивать надежную и эффективную работу основных агрегатов во всем диапазоне условий эксплуатации. Они должны быть просты в управлении и обслуживании.

2.2. Объемные насосы

Объемные насосы – насосы, в которых перемещение жидкости (или газа) осуществляется в результате периодического изменения объема рабочей камеры. К ним относятся: поршневые насосы, пластинчатые, шестеренчатые, водокольцевые.

Поршневые насосы (рис. 2.3). В поршневых насосах рабочий орган (поршень) совершает в цилиндре возвратно-поступательное движение, сообщая перекачиваемой жидкости энергию.

Подача Q, м3/с, насоса определяется по формуле

Q =    

где d – диаметр поршня, м; S – ход поршня, м; n – частота перемещения поршня, с-1.

Рис. 2.3. Поршневой насос:
1 – клапан; 2 – поршень; 3 – цилиндр

1

2

3

S

d

Поршневые насосы обладают рядом достоинств. Они могут перекачивать различные жидкости, создавая большие напоры (до 15 МПа), обладают хорошей всасывающей способностью (до 7 м) и высоким КПД
η = 0,75–0,85.

Их недостатками являются: тихоходность, неравномерность подачи жидкости и невозможность ее регулировать.

Поршневые насосы применяют для заполнения огнетушителей, газовых баллонов, их испытаний и т.д.

 

Аксиально-поршневые насосы (рис. 2.4). Несколько поршневых насосов 2 размещены в одном барабане 3, вращающемся на оси распределительного диска 1. Штоки поршней 4 шарнирно закреплены на диске, вращающемся на оси 5. При вращении вала 6 поршни перемещаются в осевом направлении и одновременно вращаются с барабаном.

Рис. 2.4. Аксиально-поршневой насос:

1 – распределительный диск; 2 – поршень; 3 – барабан; 4 – шток; 5 – ось; 6 – вал;
7 – распределительный диск

1

2

3

4

5

6

7

a

b

a

b

Эти насосы применяются в гидравлических системах и перекачивают масла.

В распределительном диске 7 выполнены два серповидных окна. Одно из них соединено с масляным баком, а второе с магистралью, в которую подается масло.

За один оборот вала барабана каждый поршень совершает ход
вперед и назад (всасывание и нагнетание).

Подача насоса определяется
по формуле

 

где Dб – диаметр барабана, м; d – диаметр поршня, м; i – число поршней; n – скорость вращения вала, об/мин.

Достоинством насосов является равномерность подачи жидкости, высокое развиваемое давление (40–50 МПа) и КПД (η) = 0,85–0,9.

В системах управления автолестниц и подъемников насосы используются и как гидромоторы и как гидронасосы.

Рис. 2.5. Поршневой насос двойного действия:

1 – эксцентрик; 2 – ось; 3 – стержень, соединяющий поршни; 4 – ползун; 5 – поршень;
6 – выпускной патрубок; 7 – большая мембрана; 8 – малая мембрана; 9 – всасывающий патрубок; 10 – корпус; 11 – крышка

9

10

11

8

7

6

5

4

3

2

1

 Поршневые насосы двойного действия. Насосы этого типа применяются в качестве вакуумных насосов на ряде пожарных насосов, выпускаемых иностранными фирмами. Принципиальная схема такого насоса представлена на рис. 2.5. Поршни насоса 5 объединены болтовым соединением 3 в единое целое. Они перемещаются смонтированным на оси 2 эксцентриком 1 посредством ползуна 4.

Частота вращения валика эксцентрика одинакова с частотой вращения вала насоса. Вал эксцентрика приводится во вра-
щение клиновым ремнем от ко-
робки отбора мощности. При
вращении эксцентрика 1 ползу-
ны 4 воздействуют на поршни
5. Они совершают возвратно-
поступательное движение. В
положении, указанном на ри-
сунке, левый поршень будет
сжимать воздух, ранее посту-
пивший в камеру. Сжатый воз-
дух преодолеет сопротивление
манжеты 7 и будет удаляться
через патрубок 6 в атмосферу.
Синхронно с этим в правой камере будет создаваться разрежение. При этом будет преодолено сопротивление первой малой манжеты 8. В пожарном насосе будет создаваться вакуум, он постепенно заполняется водой. При поступлении воды в вакуумный насос он отключается.

За каждую половину оборота эксцентрика поршни совершают ход, равный 2е. Тогда подача насоса, м3/мин, может быть вычислена по формуле

  

Рис. 2.6. Шестеренчатый насос:

1 – зубчатое колесо;
2 – корпус; 3 – впадина

1

2

3

3

где d – диаметр цилиндра, м; е – эксцентриситет, м; n – частота вращения валика, об/мин.

При частоте вращения, равной 4200 об/мин, насос обеспечивает заполнение пожарного насоса с глубины всасывания 7,5 м за время меньше 20 с.

 Шестеренчатый насос (рис. 2.6) состоит их корпуса 2 и зубчатых колес 1. Одно из них приводится в движение, второе в зацеплении с первым свободно вращается на оси. При вращении шестерен жидкость перемещается впадинами 3 зубьев по окружности корпуса.

Они характеризуются постоянной подачей жидкости и работают в диапазоне 500–2500 об/мин. Их КПД в зависимости от частоты вращения и давления составляет
0,65–0,85. Они обеспечивают глубину всасывания до 8 м и могут развивать напор более 10 МПа. Используемый в пожарной технике насос НШН-600 обеспечивает подачу Q = 600 л/мин и развивает напор Н до 80 м при n = 1500 об/мин.

 

Подача насоса определяется по формуле

 (2.13)

где R и r – радиусы шестерен по высоте и впадинам зубьев, см; b – ширина шестерен, см; n – частота вращения вала, об/мин; η – КПД.

В этих насосах предусматривается перепускной клапан. При избыточном давлении через него перетекает жидкость из полости нагнетания во всасывающую полость.

Рис. 2.7. Пластинчатый насос:

1 – гильза; 2 – ротор; 3 – пластина

1

2

3

 Пластинчатый насос (шиберный) насос (рис. 2.7) состоит из корпуса с запрессованной с него гильзой 1. В роторе 2 размещены стальные пластины 3. Приводной шкив закреплен на роторе 2.

Ротор 2 размещен в гильзе 1 эксцентрично. При его вращении лопатки 3 под действием центробежной силы прижимаются к внутренней поверхности гильзы, образуя замкнутые полости. Всасывание происходит за счет изменения объема каждой полости при ее перемещении от всасывающего отверстия к выпускному.

Подача, см3/мин, пластинчатых насосов равна

,  (2.14)

где n – частота вращения ротора, об/мин; r2c и  r2p – радиусы статора и ротора, см; b – ширина пластины.

Пластинчатые насосы могут создавать напоры 16–18 МПа, обеспечивают забор воды с глубины до 8,5 м при КПД, равном 0,8–0,85.

Рис. 2.8. Водокольцевой насос:1– ротор; 2 – рабочее пространство; 3 – канал всасывания;4 – корпус; 5 – отверстие канала нагнетания

1

2

3

4

5

Смазка вакуумного насоса осуществляется маслом, которое подается в его всасывающую полость из масляного бака вследствие разрежения, создаваемого самим насосом.

Водокольцевой насос может использоваться как вакуумный насос. Принцип его работы легко уяснить из рис. 2.8. При вращении ротора 1 с лопатками жидкость под влиянием центробежной силы прижимается к внутренней стенке корпуса насоса 4. При повороте ротора от 0 до 180о рабочее пространство 2 будет увеличиваться, а затем уменьшаться. При увеличении рабочего объема образуется вакуум и через отверстие канала всасывания 3 будет всасываться воздух. При уменьшении объема он будет выталкиваться через отверстие канала нагнетания 5 в атмосферу.

Водокольцевым насосом может создаваться вакуум до 9 м вод.ст. Этот насос имеет очень низкий КПД, равный 0,2-0,27. Перед началом работы в него необходимо заливать воду – это его существенный недостаток.

2.3. Струйные насосы

Струйные насосы широко используются в пожарной технике.

Водоструйный насос – гидроэлеватор пожарный входит в комплект ПТВ каждого пожарного автомобиля. Он используется для забора воды из водоисточников с уровнем воды, превышающим геодезическую высоту всасывания пожарных насосов. С его помощью  можно забирать воду из открытых водоисточников с заболоченными берегами, к которым затруднен подъезд пожарных машин. Он может быть использован как эжектор для удаления из помещений воды, пролитой при тушении пожаров.

Пожарный гидроэлеватор (рис. 2.9) представляет собой устройство эжекторного типа. Вода (рабочая жидкость) от пожарного насоса поступает по рукаву, подсоединенному к головке 7, в колено 1 и далее в сопло 4. При этом потенциальная энергия рабочей жидкости преобразуется в кинетическую энергию. В камере смешения происходит обмен количества движения между частицами рабочей и всасываемой жидкости: при поступлении смешанной жидкости в диффузор 5 осуществляется переход кинетической энергии смешанной и транспортируемой жидкости в потенциальную. Благодаря этому в камере смешения создается разрежение. Этим обеспечивается всасывание подаваемой жидкости. Затем в диффузоре давление смеси рабочей и транспортируемой жидкостей значительно повышается в результате снижения скорости движения. Это позволяет осуществлять нагнетание воды.

Рис.2.9. Гидроэлеватор пожарный Г-600А:

1 – колено; 2 – камера; 3 – решетка;
4 – сопло; 5 – диффузор; 6 – головка соединительная ГМ-80;       7 – головка соединительная ГМ-70

Рис. 2.10. Зависимость производительности гидроэлеватора от высоты всасывания и давления на насосе:

1 – высоты всасывания; 2 – дальность всасывания воды при высоте всасывания 1,5 м

1

2

h, м

S, м

H, МПа

Количество воды, эжектируемое гидроэлеватором, зависит от высоты всасывания и давления на насосе (рис. 2.10).

Струйные насосы просты по устройству, надежны и долговечны в эксплуатации. Существенным их недостатком является низкий коэффициент полезного действия, его величина не превышает 30 %.

Газоструйный эжекторный насос используется в газоструйных вакуумных аппаратах (рис. 2.11). С их помощью обеспечивается заполнение всасывающих рукавов и центробежных насосов водой.

Рис. 2.11. Газовый струйный эжектор:

1 – сопло высокого давления; 2 – корпус насоса;
3– камера разрежения; 4 – камера смешения;
5 – диффузор

1

2

3

4

5

Qэ

Qр

Qр+э

Рабочим телом этого насоса являются отработавшие газы двигателя внутреннего сгорания АЦ. Они поступают в сопло высокого давления, затем в камеру 3 корпуса насоса 2, в камеру смешения 4 и диффузор 5. Как и в жидкостном эжекторе, в камере 3 создается разрежение. Эжектируемый из пожарного насоса воздух обеспечивает создание в нем вакуума и, следовательно, заполнение всасывающих рукавов и пожарного насоса водой.

Газовые струйные насосы на АЦ используются также для проверки создаваемого вакуума в пожарных насосах.

Газовые струйные насосы обеспечивают заполнение систем всасывания и центробежных насосов при заборе воды с глубины 7 м в течение 30–60 с.

Рис. 2.12. Струйный аппарат для вакуумных систем ПН с приводом от дизеля:

1 – экран; 2 – сопло; 3 – трубка от вакуумного
крана насоса;
4 – сопло большое; 5 – корпус;
6 – горловина диффузора; 7 – диффузор

1

2

3

4

5

6

7

а

б

в

г

Забор воды из открытых водоисточников производится до 10 % всех пожаров. При этом наиболее часто из открытых водоисточников производят забор воды при геометрических высотах всасывания до 5 м. Высота всасывания 6 и 7 м встречается крайне редко и составляет около 1 % от общего числа случаев.

Струйный насос вакуумной системы автоцистерн с ди-
зельными двигателями имеют
одну особенность. Для уменьшения сопротивления в системе используется двухступенчатый струйный насос с постоянным подсосом воздуха.

В насосе (рис. 2.12)
имеются два сопла: малое 2 и
большое 4. В камеру между
ними подводится трубка в, со-
единяющая струйный и центробежный насосы. При поступлении отработавших газов дизеля по стрелке а большое сопло создает разрежение в камере в и происходит поступление в нее воздуха из насоса по трубке 3 и дополнительное всасывание его из атмосферы (стрелка б). Этот подсос способствует стабилизации работы струйного насоса. Такие струйные насосы используются на АЦ с шасси «Урал» и двигателями ЯМЗ-236(238).

Рис. 2.13. Пожарный насос ПН-40УВ:

1 – насос; 2 – напорный патрубок; 3 – напорная
задвижка;
4 – пеносмеситель; 5 – коллектор;
6 – задвижка коллектора; 7 – отвод насоса

1

2

3

4

5

6

7

2.4. Пожарные центробежные насосы серии ПН

  Насосы этой серии  устанавливают на автоцистернах и автонасосах. Они обозначаются так: ПН-40УВ. В этом обозначении ПН – пожарный насос; 40 – максимальная подача насоса 40 л/с; У – универсальный и В – особенности выпускаемой серии. Геометрически подобны этой серии пожарные насосы ПН-60 и ПН-110. Они применяются на пожарных аэродромных автомобилях и пожарных насосных станциях, соответственно. Все эти насосы имеют одинаковую номенклатуру основных деталей, идентичны по конструкции, но имеют различные габариты и массу.

Пожарный центробежный насос ПН-40УВ (рис. 2.13) состоит из корпуса насоса 1, двух напорных патрубков 2, двух напорных задвижек 3, пеносмесителя 4 и задвижки коллектора 6, установленных на коллекторе 5. Продольный разрез представлен на рис. 2.14. В корпусе 1, закрытом крышкой 2, на подшипниках 8 и 16 установлен вал 9 насоса. В корпусе на конической части вала размещено рабочее колесо 5. Оно сопряжено с валом шпонкой и закреплено гайкой со шплинтом. На насосах ПН-40У и ПН-40УА рабочее колесо размещено на цилиндрическом шипе вала. В осевом направлении оно закреплено гайкой и стопорится стопорной шайбой. От проворачивания оно крепится одной и двумя шпонками, соответственно, на ПН-40У и ПН-40УА. В ПН-40У корпус насоса 1 и масляная ванна 10 выполнены в виде одной детали. Все корпусные детали насосов, рабочие колеса изготовлены из алюминиевого сплава АЛ9В. Валы насосов изготовлены из стали 45Х и термически обработаны.

Рис. 2.14. Продольный разрез насоса ПН-40УВ:

1 – корпус; 2 – крышка; 3 и 4 – уплотнительные кольца; 5 – рабочее колесо;
6 – сливной краник; 7 – уплотнительный стакан с манжетами; 8 – подшипник;
9 – вал насоса; 10 – масляная ванна; 11 – червячная шестерня привода тахометра;
12 – муфта-фланец; 13 – предохранительный клапан; 14 – манжета; 15 – корпус
привода тахометра;
16 – подшипник; 17 – шланг

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

A

Б

Б

A

Рис. 2.15. Эпюра осевых сил на колесе

F

Rв

a

b

R1

R2

Важным элементом в насосе является крепление вала. Это обусловлено особенностями конструкции рабочего колеса. Оно выполнено из двух дисков – ведущего и покрывающего. Между ними расположены лопасти, загнутые в сторону, противоположную вращению. Размеры дисков колеса различны (рис. 2.15, а). Это обусловливает возникновение осевой силы, которая направлена по оси в сторону всасывающего патрубка и стремится сместить колесо по оси (рис. 2.15, б). Величину этой силы приближенно вычисляют по формуле

 (2.15)

где S – коэффициент сопротивления щелевого уплотнения (S = 0,6); Р – давление на насосе, Па;  R1 – радиус входного отверстия, м; Rв – радиус вала, м.

Для уменьшения этого давления в ведущем диске колеса предусмотрены отверстия. Через эти отверстия жидкость перетекает из левой части в правую. Кроме того, подшипник 16 (50309) имеет стопорное кольцо, воспринимающее осевое усилие и предотвращающее смещение вала в осевом направлении (рис. 2.16).

Рис.2.16. Крепление подшипника:

1 – корпус привода тахометра;
2 – прокладка; 3 – полукольцо
верхнее;
4 – корпус насоса;
5 – вал насоса; 6 – подшипник;
7 – втулка

1

2

3

4

0

5

6

7

0

Работоспособность центробежных насосов во многом определяется совершенством его герметизации.

Рис. 2.17. Уплотнительный стакан:                                                      а: 1 – вал насоса; 2 -манжета; 3 – стальной корпус; 4 – пружина;б: 1 – манжета; 2 – кольцо; 3 – кольцо; 4 – упорное кольцо; 5 – стопорное кольцо; 6 – резиновые кольца

1

2

3

4

а

б

1

2

3

4

5

6

Внутренняя герметизация рабочего колеса 5 (см. рис. 2.14) от корпуса 1 и крышки 2 осуществляется уплотнительными кольцами 3 в корпусе 4, в крышке (они изготовлены из чугуна) и на колесе 5 (они изготовлены из бронзы Бр 0ЦС-6-6-3). Радиальный зазор между кольцами находится в пределах 0,2–0,3 мм. Эти щелевые уплотнения уменьшают циркуляцию жидкости в насосе. При изнашивании колец она увеличивается.

Герметизация внутренней полости насоса от внешней среды
осуществлена двумя способами. Все стенки соединяемых корпусных дета-
лей герметизируют резиновыми прокладками.

Герметизация насоса по валу производится резиновыми манжетами (рис. 2.17), размещаемыми в специальном уплотнительном стакане 7 (см. рис. 2.14).

В уплотнительном стакане ПН-40УВ смонтированы три манжеты АСК-45. Одна из них (на рис. 2.17, б – правая) обеспечивает герметизацию при разрежении в насосе. Две другие – при давлении. Для обеспечения долговечности уплотнения в него по шлангу 17 (см. рис. 2.14) периодически подается смазка. На пожарных насосах других конструкций в стакане монтируют четыре манжеты.

Изнашивание манжет и вала ухудшает герметизацию насоса. При этом затрудняется забор воды и увеличиваются ее утечки.

Полость в корпусе насоса (см. рис. 2.14) между уплотнительным стаканом 7 и манжетой 14 образует масляную ванну 10. В ней имеется щуп и сливная пробка. В корпусе привода тахометра 15 размещены червячная шестерня привода 11 и червяк, изготовленные из стали 20. Масляная ванна и корпус привода тахометра изолированы от внешней среды манжетой 14 и защитным колпаком.

Рис. 2.18. Коллектор насоса:1 – корпус; 2 – седло клапана; 3 – клапан в сборе; 4 – прокладка; 5 – полукольца;
6 – втулка; 7 – шпиндель; 8 – корпус
задвижки;
9 – колпачок; 10 – маховичок

1

2

3

4

5

6

7

8

9

10

Для смазки подшипников качения и привода тахометра в масляную ванну заливается трансмиссионное масло ТАп-15В через отверстие для щупа. Слив его производится через сливную пробку.

Коллектор (поз. 5 на рис. 2.13) предназначен для распределения воды в рукавные линии или цистерну. Кроме того, на нем крепится напорная задвижка 6, пеносмеситель 4 и вакуумный кран для соединения внутренней полости насоса с атмосферой или вакуумным насосом.

Поперечный разрез коллектора с напорной задвижкой показан на рис. 2.18. Корпус 1 коллектора фланцем с отверстием диаметром 90 мм крепится к диффузору пожарного насоса.

Рис. 2.20. Пеносмеситель ПС-5:

1 – корпус; 2 – дозирующий кран; 3 – диск; 4 – маховичок;
5 – стрелка; 6 – отверстие в
штуцере подвода;
7 – рукоятка;
8 – кран включения; 9 – сопло;
10 – диффузор

7

8

9

10

5

4

3

2

1

6

2

1

Рис. 2.19. Напорная задвижка ПН-40УВ:

1 – клапан; 2 – ось клапана;
3 – корпус; 4 – втулка; 5 – винт;
6 – уплотнение; 7 – гайка;
8 – маховик

1

2

3

4

5

6

7

8

В лафетный ствол или цистерну вода подается через отверстие диаметром 78 мм. Проходное сечение этого отверстия регулируется задвижкой. Она состоит из корпуса 1, клапана 3 в сборе и прокладки 4. Шпиндель 7 закреплен на клапане полукольцами 5, позволяющими ему вращаться относительно клапана. Шпиндель имеет винтовую нарезку и при вращении маховичка 10 перемещается по резьбе втулки 6. При соприкосновении прокладки 4 с седлом клапана 2 вращение штока не тормозится благодаря полукольцам 5. Этим предотвращается разрушение прокладки 4.

К фланцам торцовых поверхностей коллектора (отверстия с диаметром 70 мм) шпильками крепятся две напорные задвижки (рис. 2.19). Их устройство не требует особых объяснений. При вращении маховичка 8 шпиндель с винтовой нарезкой 5 перемещается во втулке 4. Под напором воды клапан 1 поворачивается вокруг оси 2 и вода поступает в рукавную линию. При прекращении подачи воды на высоту клапан 1 под ее напором закроет вход в коллектор.

Пеносмеситель. На насосах ПН-40УВ установлены пеносмесители ПС-5 (рис. 2.20). Регулируя маховичком 4 положение дозатора 2, возможно подавать 5 различных доз пенообразователя (ПО). При включении рукояткой 7 крана 8 вода из коллектора поступит в сопло 9, а затем в диффузор 10 и во всасывающий патрубок насоса.

Образующееся в камере ПС разрежение обеспечит поступление ПО из пенобака через отверстие 6.

Положение дозатора 2 фиксируется стрелкой 5 на диске 3. Обратный клапан установлен в патрубке с отверстием 6.

Коллекторы и их оснащение на всех насосах типа ПН идентичны.

Пожарный насос ПН-60 является геометрически подобной моделью насоса ПН-40У. Основные детали и колесо насоса отлиты из чугуна (СЧ-24-44).

Рабочее колесо (диаметр 360 мм) насажено на вал диаметром 38 мм по месту посадки. Крепится оно двумя шпонками и закрепляется шайбой и гайкой.

Уплотнение вала насоса осуществляется манжетами АСК-50 (50 – диаметр вала, мм).

Для работы от открытого водоисточника на всасывающий патрубок насоса навинчивается водосборник с двумя патрубками для всасывающих рукавов диаметром 125 мм.

Пожарный насос ПН-110. Этот насос также геометрически подобен насосу ПН-40У. Его основные корпусные детали и рабочее колесо изготовлены из серого чугуна. Диаметр рабочего колеса 630 мм, диаметр вала в месте установки сальников 80 мм (манжеты АСК-80). Диаметр всасывающего патрубка 200 мм, напорных патрубков – 100 мм.

Рис. 2.21. Напорная
задвижка ПН-110:

1 – клапан; 2 – рычаг;
3 – ось заслонки; 4 – гайка; 5 – шпиндель; 6 – корпус; 7 – крышка; 8 – гайка;
9 – уплотнение;
10 – маховичок

1

2

3

4

5

6

7

8

9

10

Напорные задвижки насоса ПН-110 имеют конструктивные особенности (рис. 2.21). В корпусе 6 и крышке 7 размещен клапан 1 на оси 3 и шпиндель 5, соединенный рычагом 2 с гайкой 4. При вращении маховичка 10 гайка 4 будет навинчиваться на шпиндель 5 и поворачивать рычагом 2 клапан 1. На клапане имеется резиновая прокладка.

Технические возможности и диапазон регулирования основных параметров насоса
(Q, л/с, и H, м) оценивают по техническим и рабочим характеристикам.

Технические характеристики насосов ПН приводятся в табл. 2.1.

Значения Н, м, и Q, л/с, получены при nном, указанном в таблице, и высоте всасывания 3,5 м. Подача насоса с максимальной геометрической высоты всасывания должна быть не менее 50 % от номинальной, а напор – не менее 95 % от номинального.

Рабочие характеристики насосов ПН представлены на рис. 2.22 и 2.23. Характеристика Q-H называется главной рабочей характеристикой насоса.

При закрытой задвижке на напорном патрубке (Q = 0) напор, создаваемый насосом, равен 100–120 м. При этом насосом потребляется значительная мощность (см. рис. 2.23). Она затрачивается на механические потери в подшипниках, сальниках и нагревание воды в корпусе насоса. Перегрев воды внутри насоса может вызвать термические деформации в насосе, перегрев подшипников и срыв его работы. Поэтому с закрытой задвижкой возможна только кратковременная работа.

Таблица 2.1

Наименование показателей

Размерность

ПН-40УВ

ПН-60

ПН-110

Напор

м

100

100

100

Подача

л/с

40

60

110

Частота вращения

об/мин

2700

2500

1350

Диаметр рабочего колеса

мм

320

360

630

КПД

-

0,61

0,6

0,6

Потребляемая мощность

кВт

65

98

150

Максимальная высота всасывания

м

7,5

Масса

кг

65

180

620

3

2

1

Рис. 2.22. Рабочие характеристики насосов:

1 – ПН-40УВ; 2 – ПН-60; 3 – ПН-110

100

50

50

100    Q, л/с

100

50

Н, м

0

Рис. 2.23. Мощность, потребляемая насосом:

1 – ПН-40УВ; 2 – ПН-60; 3 – ПН-110

160

100

50

100    Q, л/с

N, кВт

3

2

1

2.5. Пожарные центробежные насосы (ПЦН)

Пожарные насосы этого типа – насосы нового поколения. Основные конструктивные элементы и системы, обеспечивающие их функционирование, аналогичны элементам и системам насосов ПН. Однако в конструкции насосов ПЦН имеется ряд принципиальных особенностей, отличающих их от насосов ПН.

В этих насосах герметизация внутренних полостей осуществляется уплотнениями торцового типа. Элементы этих уплотнений изготовлены из силицированного графита. Этот материал характеризуется высокой износостойкостью и, следовательно, обеспечивает долговечность уплотнений.

Уплотнения рабочих колес пожарных насосов могут быть и комбинированными. Так, по желанию заказчика изготавливаются насосы, в которых уплотнения рабочих колес и межступенчатые уплотнения выполняются щелевыми, а концевые уплотнения вала – торцовыми.

Существенным является также и то, что струйные насосы в вакуумных системах заменены пластинчатыми насосами с механическим приводом.

Важным является то, что в конструкции насосов реализованы автоматические системы управления забором воды из естественных водоисточников. Ручной привод является дублирующим.

Внесены изменения и в систему подачи пенообразователя. Так, предусматривается автоматическое выключение подачи пенообразователя при выключении пенных стволов или ГПС. На некоторых ПЦН предусмотрен автоматический контроль и поддержание концентрации пенообразователя в воде.

На насосах предусмотрена установка счетчиков продолжительности их работы.

Пожарный центробежный насос низкого давления – ПЦНН-40/100. Продольный разрез насоса представлен на рис. 2.24. Вал 4 насоса установлен в корпусе 5 на двух подшипниках 13. Левый подшипник в осевом направлении закреплен шайбой 15, привинченной к корпусу привода тахометра. Червячное колесо 3 этого привода в осевом направлении закреплено втулкой шкива 1. Шкив закреплен на валу гайкой. На металлической основе шкива завулканизирована резиновая оболочка. Этот шкив является приводом вакуумного насоса.

Рис. 2.24. Поперечный разрез ПЦНН-40/100:

1 – шкив; 2 – манжета; 3 – червячное колесо привода тахометра;
4 – вал; 5 – корпус; 6 – крышка; 7 – сетка; 8, 11, 12 – уплотнение торцовое;
9 – сливной кран; 10 – колесо; 13 – подшипник;

14 – сливная пробка; 15 – шайба

1

2

3

4

5

2

13

15

14

13

12

11

10

9

6

7

8

а

Подшипники вала смазываются маслом из масляной ванны. Масло заливается через отверстие, закрываемое пробкой а с щупом. Сливается масло через отверстие, закрываемое пробкой 14. Вытекание масла предотвращается резиновыми маслостойкими манжетами 2.

На коническом хвостовике вала 4 на шпонке закреплено рабочее колесо 10 насоса. Уплотнение колеса от корпуса обеспечивается уплотнениями 8 и 11 торцового типа, а уплотнение внутренней полости насоса от внешней среды обеспечивается торцовым уплотнением 12. Слив воды из полости А насоса и корпуса насоса производится через сливной кран 9 шарового типа.

Корпус насоса закрывается крышкой 6 с установленной на нем сеткой 7 с размерами ячеек 3 мм.

Размещение элементов конструкции насоса, арматуры и приборов представлено на рис. 2.25, а, б. На коллекторе 15, установленном на насосе 1, размещены четыре напорных вентиля 5 и вентиль 7 заполнения цистерны. Производятся насосы и с двумя напорными патрубками.

Непосредственно на насосе установлены сливной кран 2, вакуумный кран 3, масляный бак 21 и вакуумный насос 20. Внутри коллектора находятся падающий клапан 17 и датчик концентрации пенообразователя 18. К коллектору присоединен гидроблок 16 с тягой 19, управляющий включением и выключением вакуумного насоса 20.

На приборную панель выведены рукоятки управления автоматической системой дозирования (АСД) 13 пенообразователя, тахометр 12, счетчик времени наработки 9 и ручка 10 слива воды из дозатора пеносмесителя.

Уровень масла в масляной ванне контролируется маслоуказателем 4.

Рис. 2.25. Общий вид ПЦНН-40/100:

а: 1 – насос центробежный; 2 – кран сливной; 3 – кран вакуумный; 4 – маслоуказатель; 5 – вентиль напорный; 6 – пеносмеситель;
7 – вентиль заполнения; 8 – манометр; 9 – счетчик времени наработки; 10 – ручка сливная; 11 – панель приборная;
12 – тахометр; 13 – электронный блок; 14 – мановакуумметр; 15 – коллектор;

б: 16 – гидроблок; 17 – клапан падающий; 18 – датчик концентрации; 19 – тяга подъема вакуумного насоса; 20 – насос
вакуумный;
21 – бак масляный; 22 – рукоятка механизма отключения вакуумного насоса

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

22

21

20

19

18

17

16

а

б

Рис. 2.26. Напорный вентиль:

1 – накладка; 2 – кольцо уплотнительное;
3 – клапан; 4 – корпус клапана; 5 – корпус
вентиля;
6 – манжета; 7 – втулка направляющая;
8 – винт; 9 – пресс-масленка; 10 – втулка с
резьбой;
11 – шпонка; 12 – маховик

1

2

3

4

5

6

7

8

9

10

11

12

Рис. 2.27. Шаровый кран:

1 – ручка; 2 – валик; 3 – втулка; 4 – кольцо
уплотнительное;
5 – корпус; 6 – шарик;
7 – уплотнительное кольцо; 8 – трубка от насоса

1

2

3

4

5

6

7

8

Напорные вентили 5 и вентиль 7 заполнения цистерны (рис. 2.25) идентичны. На винте 8 размещен клапан 3 (рис. 2.26). При вращении маховичка 12 винт 8 ввинчивается во втулку 10, открывая путь воде из коллектора в рукавную линию.

Шаровые краны используются для слива воды из насоса и включения вакуумной системы.

Рис. 2.28. Падающий клапан 1 – крышка; 2 – направляющая;
3 – магнит; 4 – замыкатель;
5 – крышка; 6 – коллектор;
7 – шток; 8 – клапан;
9 – направляющий винт;
10, 11 и 12 – уплотнительные кольца

1

2

3

4

5

6

7

8

9

10

11

12

Устройство сливного крана показано на рис. 2.27. В корпусе 5 крана находится шарик 6 с двумя отверстиями. Он уплотняется резиновыми кольцами 7. В положении, указанном на рисунке, вода непрерывно по трубке 8 поступает из канала А зоны уплотнения центробежного насоса (см. рис. 2.24, поз. А и 9) и из корпуса насоса и выливается за борт автомобиля. При повороте рукоятки 1 на себя вода сливается только из полости А.

Падающий клапан тарельчатого типа. Его устройство показано на рис. 2.28. Он предназначен для предотвращения обратного тока воды при остановке насоса, когда рукава поданы в верхние этажи, а также для герметизации полости насоса при работе вакуумной системы.

На штоке 7 клапана установлен по-
стоянный магнит 3, необходимый для
индицирования нулевой подачи насоса.
Она осуществляется магнитно-электри-
ческим контактом 4, установленном на
направляющей 2.

При работе насоса поток воды переместит клапан в верхнее положение. При прекращении подачи воды под тяжестью собственного веса он опустится вниз. Установленный на штоке магнит обеспечивает замыкание электрической цепи и на панели 13 (см. рис. 2.25, а) загорается лампочка “Нет подачи воды”.

1

2

3

4

5

6

7

8

9

Пеносмеситель является частью автоматической системы дозирования, включающей датчик концентрации и электронный блок управления (см. рис. 2.25, поз. 18 и 13). Пеносмеситель (рис. 2.29) закреплен на напорном коллекторе. Основные его части: водоструйный эжектор 1 с краном включения 2, дозатор 3, обратный клапан 7 и сливной 9 кран.

Рис. 2.29. Пеносмеситель:

1 – эжектор; 2 – кран включения эжектора; 3 – дозатор; 4 – шток клапана отсекающего; 5 – электромотор; 6 – шток клапана дозирующего; 7 – обратный клапан;
8 – кран впуска воздуха; 9 – сливной кран

Диффузионный (выходной) конец эжектора вставлен в крышку центробежного насоса, а сопловой (входной) конец эжектора крепится к крану включения эжектора.

На схеме 2.29 пеносмеситель представлен в исходном (нерабочем) положении. При тушении пеной, открыв кран 2, из пожарного насоса поступит вода в эжектор 1. В камере В будет создано разрежение. Одновременно с этим в дозаторе 3 приподнимутся штоки 4 и 6 с клапанами. Тогда пенообразователь из пенобака будет поступать из камеры А в камеру Б (обратный клапан 7 при этом откроется) и В, а затем в пожарный насос (это показано стрелками).

Обратный клапан 7 лепесткового типа предотвращает доступ воды в пенобак при работе от гидранта в случаях, когда закрывают кран эжектора или останавливают насос, не закрыв предварительно кран подачи пенообразователя из пенобака в насос.

Сливной кран 9 предназначен для слива пенообразователя из полостей А и Б дозатора по окончании работы насоса. Ручка крана выведена на приборную панель (поз. 10 на рис. 2.25, а).

При открытом положении крана 9 и приподнятом положении клапана 6 проточная полость Б дозатора через специальное отверстие в области крана 9 сообщается с эжектируемой полостью В и через эжектор 1 со всасывающей полостью насоса. В этом положении кран 8 должен быть поставлен в положение «открыто» для поступления воздуха в насос при сливе пенообразователя, а также и воды.

Шток 4 клапана и шток 6 дозирующего клапана управляются специальными механизмами.

Механизм управления штоком 4 отсекающего клапана работает следующим образом (рис. 2.30). 

Из ПН

Повышение давления в пожарном насосе будет деформировать сильфон 2, перемещая шток 3 вверх. Рычаг 5, поворачиваясь, переместит шток клапана 7 вверх. Полости Б и В на рис. 2.29 соединятся. При понижении давления в насосе пружина 6, разжимаясь, переместит клапан 7 в исходное положение.

Рис. 2.31. Механизм управления
дозирующим клапаном:

1 – клапан дозирующий; 2 – зубчатая рейка; 3 – червячное колесо; 4 – червяк;
5 – зубчатые колеса редуктора;
6 – электромотор

1

2

3

4

5

6

Из пенобака

К эжектору

Рис. 2.32. Механизм ручного
управления:

1 – зубчатая рейка; 2 – зубчатое колесо;
3 – червячное колесо; 4 – червяк;
5 – муфта; 6 – рукоятка управления;
7 – пружина

1

2

3

4

5

6

7

Рис. 2.30. Механизм управления
дозирующим клапаном:

1 – корпус механизма; 2 – сильфон;
3 – шток; 4 – шток клапана; 5 – рычаг;
6 – пружина; 7 – клапан отсечной

1

2

3

4

5

6

7

Механизм управления дозирующим клапаном может работать в автоматическом режиме и при ручном управлении. Дозирующий клапан 1 (рис. 2.31) закреплен на зубчатой рейке 2, которая посредством редуктора, включающего детали 3, 4 и 5, приводится в движение электродвигателем 6. Последний управляется электронным блоком. При перемещении дозирующего клапана относительно проточного отверстия в корпусе изменяется проходное сечение проточной полости дозатора. Вследствие этого происходит изменение подачи пенообразователя в эжектор.

Включение пеносмесителя осуществляется следующим образом. На приборной панели насоса (см. поз. 1 на рис. 2.25, а) показано, что эжектор пеносмесителя включился (см. поз. 2 на рис. 2.29). На приборной панели указаны концентрации пенообразователя – 3 и 6 %. Такие концентрации пенообразователя можно подавать в 1 – 5 пеногенераторов. При этом будет устанавливаться соответствующее положение дозирующего клапана ручным приводом. Схема привода дозирующего клапана представлена на рис. 2.32.

Червячное колесо 3 вмонтировано во фрикционную муфту 5. Основная ее часть закреплена шплинтом на оси рукоятки 6, а вторая прижимается к первой (основной) пружинами 7. Вследствие этого при повороте рукоятки 6 червячное колесо 3, удерживаемое червяком 4 (см. поз. 4 на рис. 2.31), не будет вращаться. При этом зубчатое колесо 2 переместит рейку 1 (см. поз. 2 на рис. 2.31) с ее дозирующим клапаном в необходимое положение, обеспечивающее требуемую подачу пенообразователя.

Автоматическая система дозирования (АСД) пенообразователя поддерживает на требуемом уровне его концентрацию. На лицевой панели электронного блока управления (рис. 2.33) размещены переключатели и индикаторы контроля работы системы.

Рис. 2.33. Панель электронного блока управления:

1, 5, 6 – индикаторные лампочки; 2 – тумблер;
3 – переключатель типа
пенообразователя;
4 – переключатель
коррекции концентрации
пенообразователя

1

2

3

4

5

6

Рис. 2.34. Схема размещения на ПЦНВ-20/200:

1 – вал насоса;
2 – рабочее колесо

1

2

Коллектор

Подвод

Включение в работу осуществляется следующим образом. При включении тумблера 2 загорается индикаторная лампочка 1. Затем включается переключателем 3 тип пенообразователя, а переключателем 4 – коррекция его концентрации. При подаче пенообразователя будет гореть лампочка 6.

Принцип работы АДС основан на сравнении электрической проводимости раствора пенообразователя с электрическим эквивалентом раствора заданной концентрации. При изменении концентрации раствора пенообразователя изменится его электрическая проводимость. Ее рассогласование с электрическим эквивалентом зафиксируется в электронном блоке и будет выработан управляющий сигнал на электрический двигатель дозатора (см. поз. 6 на рис. 2.31). Двигатель изменит обороты и через систему зубчатых колес изменится положение клапана 1 и, следовательно, концентрация пенообразователя.

Пожарный центробежный насос высокого давления ПЦНВ-20/200. Центробежный насос выполнен трехступенчатым с осевым подводом и проходным валом. В качестве отводящих устройств на первых двух ступенях использованы направляющие аппараты с переводными каналами. Они размещены в крышках направляющих аппаратов.

Внутри корпуса насоса установлен ротор, в состав которого входит вал 1 и три рабочих колеса 2 (рис. 2.34). Уплотнения рабочих колес, межступенчатые и концевые уплотнения – торцового типа. Элементы уплотнений выполнены из силицированного графита.

Разгрузка ротора от осевой силы обеспечивается наличием у рабочих колес задних уплотнений и разгрузочных отверстий.

Рис. 2.35. Сливной кран:

1 – клапан; 2 – корпус;
3 – шайба; 4 – шплинт;
5 – пружина

1

2

3

4

5

Рис. 2.36. Напорный
шаровой кран:

1 – корпус; 2 – шар;
3 – фторопластовое
кольцо;
4, 5 – резиновые уплотнительные кольца;
6 – червяк; 7 – сектор
червячного колеса;
8 – ось

1

2

3

4

5

6

7

8

Для слива воды из полости насоса на его корпусе установлен сливной кран, а в нижней части крышек направляющих аппаратов размещены обратные клапаны. Они открываются при сливе воды и закрываются при работе насоса. Устройство сливного крана показано на рис. 2.35.

Напорный коллектор установлен на корпусе насоса и включает в себя обратный падающий клапан, вентиль для заполнения цистерны такого же типа, как на ПЦНН-40/100 и два шаровых крана с выходными патрубками.

Напорные шаровые краны насоса – левый и правый – объединены с червячными редукторами, идентичны по конструкции и отличаются только вариантом сборки. Устройство шарового крана показано на рис. 2.36.

В корпусе 1 крана помещен шар 2 с отверстием. Шар уплотнен фторопластовыми кольцами 3. Поджатие их производится резиновыми кольцами 5. В вертикальной плоскости кран уплотняется резиновыми кольцами 4. На оси 8 крана закреплен сектор 7 червячного колеса. Он приводится в движение маховичком (на чертеже не показан) червяка 6. Для слива воды из полостей уплотнения предусмотрены сливные краники по типу, представленному на рис. 2.35.

Приборная панель крепится на крышке насоса над пеносмесителем. На ней установлены мановакуумметр, тахометр, показывающий частоту вращения вала насоса и время наработки, а также манометр. На ней установлены также четыре индикатора на контрольные значения давления -0,6; -0,75; 7,5 и 30 кгс/см2, управляемые мановакуумметром и насосом.

На панели имеется индикатор нулевой подачи, вилка разъема для подключения насоса к системе электропитания пожарного автомобиля, а также тумблер для включения и переключения напряжения питания насоса и ручка сброса контрольной наработки. На ней предусмотрены гнезда для установки приборов контроля давления масла и температуры охлаждающей жидкости двигателя, приборов контроля уровня воды в цистерне и уровня пенообразователя в пенобаке, а также гнезда для установки выключателя освещения насосного отсека, выключателя прожектора и привода насоса.

Порядок включения насоса. Перед началом работы все краны должны быть закрытыми, а вакуумный насос отключен. Подача воды с подпором (из цистерны, гидранта, от другой автоцистерны) осуществляется в следующей последовательности. Собирают рукавные линии и органами управления цистерны подают воду в насос. Затем включают привод насоса и плавно открывают напорные краны. Регулируя частоту вращения вала двигателя, устанавливают давление на входе в пределах от 0,08 до
0,6 МПа, а на выходе – не более 3,5 МПа.

Подача воды с открытого водоема производится с предварительным включением напорных кранов или напорного вентиля подачи воды в цис-
терну. Вакуумный насос включают вручную и открывают вакуумный кран. Включив привод насоса, одновременно автоматически включится вакуум-
ная система. При частоте вращения вала насоса в пределах 2500–
2900 об/мин достигается избыточное давление в насосе 1,2 МПа, при котором автоматически отключится вакуумный насос.

Регулируя частоту вращения вала двигателя, устанавливают необхо-
димое давление на выходе из насоса 1,2–3,5 МПа.

При необходимости снизить давление до уровня менее 1,2 МПа сле-
дует предварительно вручную отключить вакуумную систему и закрыть вакуумный кран.

Рис. 2.37. Клапан пеносмесителя:

1 – корпус; 2 – диафрагма; 3 – пружина;
4 – шток; 5 – направляющая шайба;
6 – клапан; 7 – обратный клапан
лепесткового типа

7

6

 5

 4

 3

 2

 1

B

ПО

Б

А

ПО

Из ГК

Рис. 2.38. Принципиальная схема подачи пенообразователя:

1 – центробежный насос; 2 – клапан
пеносмесителя; 3 – обратный клапан;
4 – пеносмеситель; 5 – дозатор;
6 – сливной кран; 7 – кран включения
пеносмесителя; 8 – водяной эжектор;
9 – вакуумный кран; 10 – гидрокамера

3

2

1

10

4

5

6

7

8

9

По окончании работы сливают воду из насоса, открыв все краны. В зимний период следует включать насос для того, чтобы он поработал без воды 10–20 с. Это необходимо сделать для удаления влаги из полости насоса, включая при этом на 3–5 с вакуумный насос. После этого закрывают все краны и ставят заглушки на патрубки.

Для обеспечения безопасной работы насоса следует:

при необходимости временно прекратить подачу воды: приоткрыть вентиль подачи воды в цистерну;

не допускать работу насоса при давлении на выходе более 3,43 МПа и частоте вращения вала более 3000 об/мин;

не допускать работу насоса «всухую» продолжительностью более
1 мин;

в случае, если вода из цистерны полностью израсходована, загорается индикатор «подачи нет», при этом насос следует немедленно остановить.

Система подачи пены включает пеносмеситель, клапан пеносмесителя.

Клапан пеносмесителя (рис. 2.37) предназначен для предотвращения перерасхода пенообразователя при работе автоматической вакуумной системы и при неработающем насосе. Это возможно, когда при включенном дозаторе происходит уменьшение напора, и автоматически включается вакуумная система или в случае, когда останавливают насос, не закрыв предварительно кран подачи пенообразователя из пенобака в насос.

Функционально клапан пеносмесителя включает в себя отсекатель магистрали «пенобак-пеносмеситель», управляемый давлением напорной полости центробежного насоса, и обратный клапан 7 лепесткового типа.

При работе центробежного насоса давлением из гидрокамеры вакуумной системы в полости В деформируется диафрагма 2. Вследствие этого будут разобщены полости А и Б. При включенном кране дозатора пенообразователь, преодолевая сопротивление лепесткового клапана 7, будет поступать в пеносмеситель.

Клапан пеносмесителя и пеносмеситель закреплены на коллекторе насоса.

Принципиальная схема подачи пенообразователя и пеносмесителя показана на рис. 2.38.

Устройство пеносмесителя принципиально не отличается от пеносмесителя ПС-5. Однако его дозатор 5 имеет три положения: 0 – закрыт, 1 и 2 – на один или два пеногенератора. Кроме того, на пеносмесителе имеется сливной кран 6 пробкового типа (см. рис. 2.35) для сообщения полости насоса с атмосферой при сливе воды. Особенностью является также то, что к пеносмесителю подключена магистраль вакуумной системы с вакуумным краном 9 шарового типа (см.рис. 2.27).

Подача водного раствора пенообразователя к пеногенераторам производится в такой последовательности. Подать ПО из пенобака в насос, перевести рукоятку крана пеносмесителя в положение «ОТК», установить давление на выходе из насоса от 1 до 2 МПа, плавно открыть напорные краны и установить дозатор в требуемое положение.

После окончания работы перекрыть поступление ПО в насос и уменьшить подачу насоса до 0,2–1,0 л/с и произвести промывку дозатора и насоса. Для этого следует переключить магистраль пенообразователя на подсос воды из посторонней емкости и установить рукоятку дозатора в положение 2. В этом положении необходимо поработать 3-5 мин при давлении на выходе из насоса от 1 до 2 МПа.  В процессе промывки необходимо несколько раз повернуть рукоятку крана пеносмесителя из положения «ОТК» в положение «ЗАКР» и обратно. Следует также повернуть рукоятку дозатора.

Рис. 2.39. Компоновка рабочих колес ПЦНВ-4/400

Из водо-
источника

К коллектору насоса

Пожарный центробежный насос высокого давления ПЦНВ-4/400. Насос ПЦНВ-4/400 предназначен для тушения пожаров водой или пеной, забирая воду только из цистерны или от гидранта. Насос четырехступенчатый со встречно расположенными колесами третьей и четвертой ступени по отношению к первым двум колесам (рис. 2.39).

Рабочие колеса насоса выполнены с полуоткрытыми цилиндрическими лопатками без переднего покрывающего диска. Рабочие колеса разделены направляющими аппаратами.

К выходному патрубку насоса крепится напорный коллектор. Внутри его расположен обратный (падающий) клапан, как в ранее описанных насосах. На коллекторе установлены два вентиля тарельчатого типа, пеносмеситель и перепускной клапан. Для слива воды из коллектора установлены два шаровых крана. Такой же кран установлен для слива воды из коллектора.

Пеносмеситель по конструкции аналогичен ПС-5. Однако его дозатор рассчитан на подачу пенообразователя для работы 1 или 2 стволов с 3 или 6 % его концентрации.

Перепускной клапан (ПК) обеспечивает частичный переток воды из насоса в цистерну при закрытых вентилях или выключенных стволах в цистерну, предотвращая перегрев насоса. Он также управляет работой отсечного клапана, перекрывающего поступление пенообразователя в насос.

Схема ПК показана на рис. 2.40 для случая, когда стволы отключены, насос работает и из коллектора 1 нет поступления воды в рукавные линии. Силой пружины (на схеме не показана) на оси 3 заслонка 9 перемещена в горизонтальное положение. В этом положении упором 4 клапан 6, укрепленный на рычаге 7, откроет отверстие в штуцере 5. Вода в небольшом количестве будет перетекать из полости А коллектора по отверстию штуцера 5 через отсечной клапан в цистерну пожарного автомобиля.

Рис. 2.40. Клапан перепускной:

1 – коллектор насоса; 2 – корпус клапана; 3 – ось заслонки; 4 – упор; 5 – штуцер; 6 – клапан; 7 – рычаг;
8 – ось рычага; 9 – заслонка

1

2

3

4

5

6

7

8

9

A

Б

Рис. 2.41. Отсекающий клапан:

1 – корпус; 2 – обратный клапан; 3 – клапан;
4 – штуцер для промывки; 5 – шток; 6 – сильфон; 7 – штуцер для подвода воды от перепускного клапана; 8 – втулка; 9 – штуцер для слива воды; 10 – штуцер для подвода воды в цистерну; 11 – штуцер для подвода пенообразователя к пеносмесителю

1

2

3

4

5

6

7

8

A

9

10

11

При включении стволов в работу поток Б воды переместит заслонку 9 в положение, указанное пунктиром. Рычаг 7 силой пружины (она не показана) на оси 8  клапаном 6 перекроет отверстие в штуцере 5, при этом перетекание воды прекратится.

Отсекающий клапан (ОК) (рис. 2.41) выполняет несколько функций: регулирует количество воды, перетекающее из ПК, автоматически перекрывает поступление пенообразователя из пенобака в насос в случае отключения подачи стволами и, наконец, используется для промывки системы подачи пенообразователя.

Из перепускного клапана вода поступает через штуцер 7 в полость А и из нее в полость сильфона 6. В зависимости от количества поступающей воды сильфон, деформируясь, будет перемещать шток 5 вверх. При этом изменяется проходное сечение в горизонтальном отверстии клапана 3, чем и регулируется перетекание воды в цистерну пожарного автомобиля.

При тушении пожара пеной в случае отключения пенных стволов клапаном 3 будет перекрыто поступление пенообразователя через штуцер 11, полости Г и В будут разобщены и поступление пенообразователя к пеносмесителю прекратится. При возобновлении работы стволов поступление воды из ПК прекратится. Сильфон, занимая исходное положение, вытолкнет воду через полость А и Б и штуцер 10 в цистерну.

Слив воды из системы ПК и ОК осуществляется через кран, установленный на штуцере 9 для слива воды.

Рис. 2.42. Схема компоновки рабочих колес ПЦНК-40/100-4/400:

1 – рабочее колесо ступени нормального давления; 2 – вал; 3 – фрикционный механизм включения мультипликатора; 4 – ведущее колесо мультипликатора; 5 – вал; 6 – рабочие колеса ступени высокого давления;
7 – коллектор ступени высокого
давления;
8 – коллектор ступени
нормального давления

1

2

3

4

5

6

7

8

d

b

c

c

a

Промывка системы подачи пенообразователя осуществляется водой, подаваемой к штуцеру 4. Вода поступает в полость В отсекающего клапана и через штуцер 11 в пеносмеситель.

Пожарный центробежный насос комбинированный ПЦНК-40/100-4/400. Насос комбинированный, двухступенчатый. На валу 2 насоса нормального давления укреплено рабочее колесо 1, механизм 3 включения ведущего зубчатого колеса мультипликатора 4 (рис. 2.42).

При включенной второй ступени, нормальном напоре 100 м и подаче
40 л/с насос работает как насос ПЦНН-40/100. При этом вода поступает во всасывающий патрубок а, подается в коллектор 8, а затем в рукавную линию b.

При включенной второй ступени и отсутствии напорной линии b нормального давления вода из коллектора 8 первой ступени поступает по трубопроводу с во всасывающий патрубок колеса 6 насоса второй ступени, а затем, как показано стрелками, в коллектор 7 насоса высокого давления и в напорную линию d.

Первая ступень насоса конструкции отличается от ПЦНН-40/100 только наличием механизма 3 включения мультипликатора. Передаточное отношение мультипликатора равно 2,33. Смазка всех деталей осуществляется маслом из масляной ванны.

К выходному патрубку ступени высокого давления присоединен коллектор 7. На нем установлены два вентиля тарельчатого типа и перепускной клапан, как на насосе ПЦНВ-4/400. Он соединен трубкой с цистерной. На коллекторе имеется патрубок для соединения рукава на рукавной катушке со стволом-распылителем. На нем также предусмотрен отвод с обратным клапаном для продувки рукава катушки сжатым воздухом из рессивера тормозной системы.

Параметры технических характеристик насосов серии ПЦН представлены в табл. 2.2.

Таблица 2.2

Наименование показателя

Размерность

ПЦНН-40/100

ПЦНВ-20/200

ПЦНВ-4/400

ПЦНК-
40/100-4/400

Номинальная подача

л/с

40

20

4

40 и 4

Номинальный напор

м

100

200

400

100 и 400

КПД

-

0,6

0,6

0,4

0,6 и 0,215*

Потребляемая мощность

кВт

65,4

65,5

39,2

65,5 и 73,6*

Частота вращения

об/мин

2700

2700

6400

2700 и 6300

Высота всасывания

м

7,5

7,5

-

7,5

Время всасывания

с

40

40

-

40

Масса

кг

100

150

40

150

* При работе одной или двух ступеней.

Примечания:

1. Потребляемая мощность и КПД ПЦНК указаны для случая подачи и напора нормального или высокого. При одновременной подаче воды секцией нормального и высокого напора ее величина равна соответственно 15 и 2 л/с (величины напоров номинальные). В этом случае общий КПД не менее 0,35, а потребляемая мощность не более 64,5 кВт.

2. Параметры характеристик в табл.2.2 получены при глубине всасывания 3,5 м и номинальных частотах вращения валов насосов. При максимальной глубине всасывания подача насосов уменьшается на 50 %.

Рабочие характеристики ПЦН были получены во ВНИИПО. Обрабатывая экспериментальные результаты, была получена общая формула зависимости напора Н, м, развиваемого насосами, потребляемой мощности N, кВт, и КПД в зависимости от величины подачи Q,  л/с:

yi = Ai + BiQ – Ci Q2 + DQ3.                                             (2.16)

Значения индексов i и коэффициентов А, В, С и D приводятся в
табл. 2.3. Они получены при номинальных скоростях вращения валов насосов и высоте всасывания 3,5 м.

Таблица 2.3

п/п

Наименование
показателя

Размерность

Константы

А

В

С

D

1

2

3

ПЦНН-40/100

Напор Н

Мощность N

КПД

м

кВт

%

92,55

20,6

0

0,815

0,957

3,2

0,014

0

0,036

0

0

0

1

2

3

ПЦНВ-20/200

Напор Н

Мощность N

КПД

м

кВт

%

210

37,5

0

1,6

1,54

5,38

0,1

0

0,15

0

0

0,0015

1

2

3

ПЦНВ-4/400

Напор Н

Мощность N

КПД

м

кВт

%

432

17,66

0

15,9

4,8

25,6

5,8

0

5,3

0

0

0,42

0

0

Рис. 2.43. Рабочие характеристики:

1 – ПЦНН-40/100; 2 – ПЦНВ-20/200;

3 – ПЦНВ-4/400

1

2

3

Рабочие характеристики ПЦН, построенные в соответствии с данными табл. 2.3, приводятся на рис. 2.43.

При необходимости иметь характеристики насосов при скоростях, отличных от номинальных, производят пересчеты в соответствии с методом подобия.

2.6. Вакуумные системы пожарных насосов

Для подачи воды центробежными насосами их рабочие полости и всасывающие рукава необходимо заполнить водой. Это осуществляется вакуумными системами. Их основу составляют вакуумные насосы и краны, трубопроводы и приводы управления.

На АЦ, АНР и мотопомпах в качестве вакуумных насосов применяют газоструйные, шиберные, поршневые и иногда водокольцевые насосы. Приводы к ним могут быть ручными или комбинированными: ручными и автоматическими. Последние обеспечивают автоматический забор воды при пуске насоса и восстановление обрыва водяного столба.

Газоструйные вакуумные системы. Эти системы применяются на АЦ и АНР с насосами ПН-40, ПН-60 и ПН-110.

В их систему входят вакуумные краны, газоструйные вакуумные аппараты (ГСВА), трубопроводы.

Вакуумный кран предназначен для соединения внутренней полости насоса с газоструйным вакуумным аппаратом. Он устанавливается на коллекторе насоса. Его устройство показано на рис. 2.44, а принципиальная схема – на рис. 2.45. На этом рисунке показано положение, когда кулачковый валик 11 отжал нижний клапан 13. В этом положении пружина верхнего клапана 8 прижмет его к седлу и разобщит полости Б и В. При таком положении клапанов 8 и 11 отсасываемый из насоса ГСВА воздух пройдет в полость А и Б и по трубке б к струйному насосу. Это показано сплошными стрелками. По заполнении насоса водой кулачковый валик поворачивают так, чтобы нижний клапан 13 разобщил полости А и Б, а верхний клапан 8 соединил полость Б и В. В этом  положении струйный насос отсосет из полости Б и трубки, соединяющей вакуумный клапан с ГСВА, попавшую туда воду. Воздух по отверстию а поступит в полость В и Б и в трубку б.

Рис. 2.44. Вакуумный кран:

1 – глазок; 2 – платик; 3 – упор рукоятки; 4 – корпус электро-
лампочки;
5, 7, 12 – гайки; 6 – корпус крана;8 – верхний клапан; 9 – рукоятка; 10 – уплотнение; 11 – кулачковый валик; 13 – нижний клапан; 14 – пружина

1

2

3

4

5

7

8

9

10

11

12

13

14

Рис. 2.45. Принципиальная схема вакуумного крана:

8 – верхний клапан; 11 – кулачковый валик; 13 – нижний клапан

8

11

13

а

б

В нижней части крана имеются два отверстия, закрытые глазками 1 из органического стекла (см. рис. 2.44). К одному из них крепится корпус 4 электрической лампочки. Через глазок контролируют заполнение насоса водой.

6

Газоструйные вакуумные аппараты устанавливают в системе выпуска отработавших газов двигателя внутреннего сгорания АЦ или АНР.

ГСВА состоит из корпуса с заслонками, струйного газового насоса и газовой сирены.

Блок газоструйного вакуум-аппарата и газовой сирены (рис. 2.46) состоит из корпуса 5 и крышки 10, изготовленных из серого чугуна. К корпусу 5 присоединены резонатор 1 и распределитель 2, составляющие газовую сирену, и струйный насос 12. Внутри корпуса на осях 6 установлены заслонки 3 и 14. На концах осей закреплены рычаги 7 и 11. Пружиной 13 заслонки прижаты к своим седлам. В этом положении отработавшие газы проходят от двигателя к глушителю.

1

2

3

4

5

6

7

8

9

10

11

13

12

14

Рис. 2.46. Газоструйный вакуумный аппарат:

1 – резонатор; 2 – распределитель; 3, 14 – заслонки; 4 – рычаг заслонки; 5 – корпус; 6, 9 – ось заслонки; 7, 11 – рычаги; 8 – фланец; 10 – крышка; 12 – струйный насос; 13 – пружина

Условия работы ГСВА очень тяжелые. Все его детали омываются горячими отработавшими газами двигателя. Поэтому большой и малый диски заслонок выполнены из жаростойкой легированной стали и приварены к стальным цилиндрам.

Заслонки 3, 14 устанавливаются так, что могут отклоняться от их осей на 5 – 6о. Этим обеспечивается плотное прилегание заслонок к седлам. Рычаги 4 жестко соединены с осями 6, поворачивающимися в стальных втулках. Струйный насос 12 крепится к фланцу ГСВА. К фланцу 8 диффузора присоединяется трубопровод от вакуумного крана.

Герметичность в месте соединения корпуса и крышки обеспечивается прокладками из асбостального полотна и подмоткой шнурового асбеста в выточках осей. Оси заслонок собирают на графитной смазке.

Включение  ГВСА производят из насосного отделения при заднем размещении насоса. При этом заслонка 14 займет вертикальное положение и будет открыт путь отработавшим газам в струйный насос 12.

Сирену включает водитель в кабине. При этом заслонка 3 займет вертикальное положение, отработавшие газы будут проходить через распределитель 2 в резонатор 1. Изменяя обороты двигателя и, следовательно, количество выходящих отработавших газов, изменяют силу и тон звука, издаваемого сиреной.

Рис. 2.47. Вакуумная система с ГСВА:

1 – всасывающая сетка; 2 – всасывающий рукав; 3 – пожарный насос; 4 – вакуумный кран; 5 – коллектор двигателя; 6 – корпус ГСВА; 7 – заслонка; 8 – выхлопная труба;
9 – струйный насос; 10 – трубка

1

2

3

4

5

6

7

8

9

10

Pa

Qэ

Q

Qр

Работу системы всасывания рассмотрим по схеме, представленной на рис. 2.47. При вертикальном положении заслонки 7 ГСВА и включенном вакуумном кране 4 отработавшие газы двигателя Qp  поступят в струйный насос 9. В его камере будет создано разрежение и из полости насоса 3 и всасывающих рукавов 2 начнется удаление воздуха Qэ. Под влиянием разности атмосферного давления Ра и разрежения поднимется обратный клапан во всасывающей сетке 1 и вода заполнит всасывающую линию. При выключении вакуумного крана камера струйного насоса будет соединена с атмосферой. Это позволит ГСВА удалить воду из трубки 10, если она туда попала при несвоевременном выключении вакуумного крана.

Проверка работоспособности вакуумной системы производится по величине создаваемого разрежения в насосе за нормативное время. Его величина 0,073–0,0076 МПа  должна достигаться за 20 с. Герметичность насоса оценивается по падению разрежения в насосе. Оно  не должно превышать 0,013 МПа за 2,5 мин.

1

2

3

4

5

6

Из ПН

Рис. 2.48. Схема механизма
отключения:

1 – корпус; 2 – пружина;
3 – шток; 4 – сильфон; 5 – основание сильфона; 6 – мембрана

Проверка осуществляется в такой последовательности. Всасывающий патрубок насоса должен быть закрыт заглушкой, вакуумный кран включен. Запустив двигатель, увеличивая его обороты, создают вакуум, оцениваемый по мановакуумметру. Выключив вакуумный кран, по секундомеру фиксируют время падения вакуума. Если в течение 2,5 мин оно будет меньше 0,013 МПа, насос и всасывающая система исправны и работоспособны.

Вакуумные системы с пластинчатыми насосами. Эти системы предназначены для обеспечения забора воды из открытых водоемов, автоматического восстановления подачи воды при обрыве водяного столба и проверки работоспособности системы и герметичности пожарного насоса. Включение ее в работу может осуществляться вручную или автоматически. Геометрическая высота всасывания этих систем до 7,5 м. Время всасывания 40 с. Такие системы используются на пожарных насосах ПЦНН-40/100, ПЦНВ-20/200.

Вакуумная система насоса ПЦНН-40/100. Эта система включает пластинчатый вакуумный насос, вакуумный шаровой кран и гидроблок. Гидроблок служит для передачи давления напорной полости насоса в рабочую полость механизма автоматического отключения вакуумного насоса и вакуумного затвора.

Механизм отключения (рис. 2.48) предназначен для автоматического отключения и включения вакуумного насоса при заборе воды из открытых водоисточников. Он работает следующим образом.

При увеличении давления в коллекторе насоса будет деформироваться мембрана 6. Гидравлическая жидкость, заполняющая пространство между корпусом 1 и сильфоном 4, воздействуя на основание 5 сильфона 4, поднимет шток 3 и рычаг 11 (см. рис. 2.50) вверх. При уменьшении давления в насосе пружина 2 преодолеет усилие сильфона и механизм займет исходное положение.

Рис. 2.49. Схема вакуумного
затвора:

1 – корпус; 2 – шток;
3 – клапан; 4 – пружина;
ПН – пожарный насос

1

2

3

4

К вакуумному

насосу

Из ПН

Из ПН

Вакуумный затвор (рис. 2.49) предназначен для разъединения и соединения полостей вакуумного насоса и пожарного насоса. Его устройство и работа отличается от механизма отключения наличием дополнительного клапана 3 с пружиной 4. При повышении давления в корпусе 1 шток 2, поднимаясь, будет сжимать пружину, а затем плотно прижмет клапан к его седлу. При уменьшении давления в корпусе механизма шток постепенно обеспечит перемещение клапана и разъединяемые полости будут соединены.

Стабильная работа вакуумной системы обеспечивается тем, что порог срабатывания механизма отключения выше, чем порог срабатывания вакуумного затвора. Это обеспечивается регулированием затвора D (см. рис. 2.50).

Рис. 2.50. Вакуумная система пожарного насоса ПЦНН-40/100:

1 – всасывающий патрубок насоса; 2 – каток на валу насоса; 3 – коллектор пожарного насоса; 4 – рычаг крепления вакуумного насоса; 5 – вакуумный насос с катком фрикционной передачи; 6 – резервуар с маслом; 7, 14 – трубопроводы; 8 – трубопровод к
коллектору;
9 – гидроблок; 10 – вакуумный затвор; 11 – рычаг привода; 12 – механизм
отключения;
13, 15 – регулировочная гайка; 16 – пружина; 17 – вакуумный кран

1

2

3

7

8

9

10

11

12

13

14

15

16

17

5

4

6

Принципиальная схема вакуумной системы ПЦНН-40/100 представлена на рис. 2.50. Каток 5 фрикционной передачи, установленный на вакуумном насосе, силой собственного веса и пружиной 16 прижат к катку 2, установленному на валу пожарного насоса (см. рис. 5.14). Катки можно разобщить вручную, как показано стрелками. В разобщенном состоянии катков рычаг стопорится (на рисунке не показано). Разобщение катков 2 и 5 и их соединение может осуществляться также и автоматически. При заборе воды из цистерны или от пожарного водопровода вакуумный насос выключается вручную. Работа в автоматическом режиме осуществляется следующим образом. После ус-
тановки рукавной всасывающей линии включают вакуумный кран 17 и пожарный насос. От катка 2 к катку 5 будет передаваться крутящий момент. Пластинчатый насос создает вакуум во всасывающей системе. В вакуумный насос непрерывно подается масло из резервуара 6. Под влиянием давления воды, поступающей из пожарного насоса по трубопроводу 8, в вакуумном затворе 10 клапан отключит вакуумный насос. Затем сработает механизм отключения 12 и системой рычагов 11 и 4 разобщит катки 5 и 2. В случае прекращения подачи воды насосом (обрыв водяного столба) механизм отключения примет исходное положение и каток 5 вакуумного насоса под тяжестью собственного веса и силой пружины 16 будет прижат к катку 2 насоса. Процесс всасывания воды восстановится.

Из изложенного выше (см. рис. 2.47) следует, что вакуумные системы пожарных насосов серии ПН включаются в работу от двигателя внутреннего сгорания и центробежный насос заполняется водой при невращающемся вале с рабочим колесом.

Пожарные насосы серии ПЦН имеют вакуумные системы, которые включаются в работу от привода центробежного насоса. Следовательно, вал и рабочее колесо на нем должны приводиться во вращение от КОМ при незаполненном водой насосе, т.е. элементы торцевого уплотнения не охлаждаются. В таком положении их нормальная работа допускается в течение не более одной минуты, как указывалось раньше. Это требует жесткой проверки работоспособности вакуумных систем.

Проверка работоспособности вакуумной системы осуществляется по двум параметрам.

Во-первых, проверяется герметичность насоса включением вакуумного насоса при скорости вращения вала насоса 2000–2500 об/мин. Вакуум должен создаваться в течение 20 с, равным 0,073–0,076 МПа. Его уменьшение на 0,0198 МПа не должно превышать 3,5 мин. Превышение этого времени свидетельствует о наличии в системе неплотностей. Их обнаруживают по утечкам воды при работе или опрессовкой избыточным давлением 0,6 МПа.

Во-вторых, проводится проверка производительности вакуумного насоса в следующей последовательности:

к всасывающему патрубку присоединяют два всасывающих рукава с заглушкой на свободном конце;

отключают вакуумный насос и открывают вакуумный кран;

запускают двигатель и при оборотах (2700±100) об/мин плавно включают вакуумный насос и секундомер;

отмечают время достижения разрежения 0,074 МПа; оно не должно превышать 40 с.

Если время разрежения будет больше 40 с, а его падение не превышает 3,5 мин (см. п. 1), то это свидетельствует о потере производительности вакуумного насоса.

В этом случае следует проверить целостность трубопроводов вакуумной системы. При необходимости разбирают вакуумный насос, проверяют состояние лопаток, гильзы и уплотнительных колец. Обнаруженные неисправности устраняют.

Проводится также проверка элементов привода вакуумного насоса. Рабочие поверхности катков должны быть гладкими, без выкрашивания и признаков неравномерного износа. Усилие прижатия катков проверяется динамометром при неработающем насосе. Усилие размыкания, измеренное на рычаге, должно быть в пределах (18±3) кг. Регулирование его осуществляется путем поджатия или ослабления пружины на рычаге.

Вакуумная система насоса ПЦНВ-20/200. Она предназначена для включения пластинчатого вакуумного насоса, гидрокамеры, водоотделителя, механизма отключения, вакуумного затвора и вакуумного шарового крана.

Гидрокамера предназначена для управления элементами автоматической вакуумной системы: вакуумным затвором (ВЗ), механизмом автоматического отключения (МО) вакуумного насоса и управления клапаном пеносмесителя (ПС).

Рис. 2.51. Гидрокамера:

1 – корпус; 2 – сильфон;
3 – тройник; 4 – пружина; 5 – полость с гидравлической жидкостью

1

2

3

4

5

Гидрокамера (рис. 2.51) работает следующим образом. При повышении давления в пожарном насосе и в полости между корпусом 1 и сильфоном 2 он будет, преодолевая усилие пру-
жины 4, сжиматься. При этом давление гидрав-
лической жидкости в полости 5 будет увели-
чиваться и жидкость через тройник 3 будет подаваться в МО, ВЗ и клапан ПС.

Исходное положение сильфон займет при уменьшении давления в пожарном насосе.

Механизм отключения по устройству и принципу аналогичен МО ПЦНН 40/100. Различие состоит в том, что сильфон деформируется не под давлением воды из пожарного насоса, а под влиянием гидравлической жидкости, передающей давление из гидрокамеры.

Водоотделитель (рис. 2.52) предназначен для задержания воды, поступающей в вакуумную систему на конечной стадии заполнения водой центробежного насоса. При этом будет повышаться давление в ГК, поплавок 2 поднимется по стержню 3 и закроет проход к вакуумному затвору.

Рис. 2.52. Водоотделитель:

1 – корпус; 2 – поплавок;
3 – стержень

1

2

3

Рис. 2.53. Вакуумный затвор:

1 – корпус; 2 – мембрана;
3 – золотник; 4 – пружина

1

2

3

4

Вакуумный затвор (рис. 2.53) предназначен для автоматического разобщения вакуумного насоса со всасывающей полостью ПЦНВ-20/200 при появлении избыточного давления в его напорной полости.

В исходном положении золотник 3 отжат пружиной 4, при этом открыт проход от ВО к ВН. При повышении давления в гидрокамере ГК мембрана 2 сожмет пружину 4 и золотник 3 перекроет проход от ВО к ВН.

Порог срабатывания вакуумного затвора, равный 0,74 МПа
(7,5 кгс/см2), предусмотрен разработчиками его конструкции. Он меньше порога срабатывания механизма отключения.

Принципиальная схема вакуумной системы ПЦНВ-20/200 представлена на рис. 2.54. Она функционирует следующим образом.

Вручную рычагом 8 возможно разобщить катки 2 и 4. В этом положении вакуумный насос будет выключен и забор воды возможно осуществлять из цистерны или водопроводной сети.

1

2

3

4

5

6

7

8

9

10

11

12

13

15

16

14

17

18

19

в

При заборе воды из открытых водоисточников необходимо установить всасывающие рукава, включить вакуумный кран 12, а затем пожарный насос. Крутящий момент будет передаваться катками 2 и 4. Вакуумный насос начнет откачивать воздух из всасывающего патрубка насоса 1 через струйный насос 16 пеносмесителя 15, вакуумный кран 12, трубку в, водоотделитель 10, вакуумный затвор 9 и через пластинчатый насос с катком 4 в атмосферу. Насос начнет забирать воду и она будет поступать в гидрокамеру 11. Когда давление воды достигнет 0,74 МПа (7,5 кгс/см2), сработает гидрокамера 11. При этом водой будет заполняться трубопровод в и в водоотделителе 10 поплавок закроет ей доступ в вакуумный затвор. Повышенное давление в гидрокамере обеспечит срабатывание вакуумного затвора 9. Система всасывания будет отключена. Затем штоком механизма отключения 7 будет поднят рычаг 6. Катки 2 и 4 будут разъединены. При обрыве столба воды или уменьшении давления в пожарном насосе придут в исходное положение механизмы 7 и 9 и автоматически начнется процесс заполнения насоса водой. Работа вакуумного насоса сопровождается эжектированием масла из резервуара 5.

Рис. 2.54. Вакуумная система пожарного насоса ПЦНВ-20/200:

1 – всасывающий патрубок центробежного насоса; 2 – каток на валу насоса;
3 – коллектор; 4 – каток пластинчатого насоса; 5 – резервуар с маслом; 6 – рычаг;
7 – механизм отключения; 8 – ручной привод; 9 – вакуумный затвор;
10 – водоотделитель; 11 – гидрокамера; 12 – вакуумный шаровой кран;
13 – клапан пеносмесителя; 14 – обратный клапан; 15 – пеносмеситель; 16 – струйный
насос; 17 – дозатор; 18 – сливной кран; 19 – кран включения пеносмесителя

Порог срабатывания, равный 0,74 МПа, регулируется величиной зазора Г. Она должна быть в пределах (1,5±5) мм.

Проверка работоспособности вакуумной системы этого насоса производится аналогично тому, как это делается для насоса ПЦНН-40/100.

Вакуумная система насоса частично задействована для регулирования подачи пенообразователя. В пеносмеситель 15, включающий дозатор 17, струйный насос 16, кран включения пеносмесителя 19 и сливной кран 18 пенообразователь поступает из пенобака через обратный клапан 14 к клапану пеносмесителя 13. При уменьшении напора в насосе давление от гидрокамеры 11 выключит клапан 13. При увеличении напора в насосе он будет включен.

Рис. 2.55. Вакуумная система
с водокольцевым насосом:

1 – центробежный насос; 2 – всасывающий трубопровод; 3 – вакуумный насос; 4 – питающий трубопровод;
5 – воздухоотводящий трубопровод;
6 – бачок вакуумного насоса;
7 – воздухоотводящая труба

1

2

3

4

7

6

5

Схема вакуумной системы МАВ 200  IVEKO (рис. 2.55). Вакуумный водокольцевой насос 3 автоматически начинает работать при включении пожарного насоса 1. При этом на пульте управления насосом срабатывает сигнализатор. При достижении в напорной линии достаточного давления вакуумный насос автоматически отключается и лампочка сигнализатора гаснет.

Для работы вакуумного насоса необходимо питание его водой из бачка 6. Бачок заполняется водой не менее чем на 1/3 своего объема.

Зимой бачок заполняется смесью, состоящей из 20 % глицерина и 80 % воды. Можно использовать антифриз.

Работает система следующим образом. При включении вакуумного насоса 3 проходит его заполнение водой из бачка 6 по трубопроводу 4. При образовании водяного кольца в насосе 3 начнется образование вакуума в насосе 1. Воздух из насоса 1 будет поступать по трубопроводу 2 в насос 3, а затем по трубопроводу 5 и воздухоотводящей трубе 7 в атмосферу.

2.7. Неисправности центробежных насосов и их обслуживание

Неисправности (отказы), возникающие в насосных установках и водопенных коммуникациях, приводят к нарушению их работоспособности, снижению эффективности тушения пожаров и увеличению убытков от них. Отказы в работе насосных установок возникают вследствие ряда причин:

во-первых, они могут появиться вследствие неправильных действий водителей при включении водопенных коммуникаций. Вероятность отказов по этой причине тем меньше, чем выше уровень квалификации боевых расчетов;

во-вторых, они появляются из-за износа рабочих поверхностей деталей. Отказы по этим причинам неизбежны (их необходимо знать, своевременно уметь оценивать);

в-третьих, нарушения плотности соединений и связанные с ними утечки жидкости из систем, невозможности создания разрежения во всасывающей полости насоса (необходимо знать причины этих отказов и уметь устранять их).

Неисправности насосных установок ПН. Признаки возможных неисправностей, приводящих к отказам, их причины и способы устранения приводятся в табл. 2.4. Таблица 2.4

Признаки
неисправностей

Причины неисправностей

Способы устранения

  При включении вакуумной системы в полости пожарного насоса не создается разрежение

  Подсос воздуха:

  1. Открыт сливной кран всасывающего патрубка, неплотная посадка клапанов на седла вентилей и задвижек, не закрыты вентили, задвижки.

  2. Неплотности соединений вакуумного клапана и насоса, стакана диффузора пеносмесителя, трубопроводов вакуумной системы, сальников насоса, пробкового крана

  1. Плотно закрыть все краны, вентили, задвижки. При необходимости разобрать их и устранить неисправность.

  2. Проверить плотность соединений, подтянуть гайки, при необходимости заменить прокладки.

  При изношенных сальниках насоса заменить их

  Пожарный насос не заполняется водой при большом разрежении

  1.  Большая высота всасывания.

  1.  Расслоился  пожарный всасывающий рукав.
  2.  Засорена всасывающая сетка
  1.  Уменьшить высоту всасывания.
  2.  Заменить всасывающий рукав.
  3.  Очистить всасывающую сетку

  Мановакуумметр не показывает давления (разрежения) при исправном насосе

  1.  Неисправен мановакуумметр.
  2.  Засорен канал мановакуумметра или замерзла вода
  1.  Заменить мановакуумметр.
  2.  Прочистить канал мановакуумметра

  При работе пожарного насоса наблюдается стук и вибрация

  1.  Имеет место кавитация.
  2.  Ослабли болты крепления насоса к раме.
  3.  Износились шарикоподшипники.
  4.  Попадание в насос посторонних предметов
  1.  Уменьшить высоту всасывания или расход воды.
  2.  Подтянуть болты.
  3.  Заменить шарикоподшипники.
  4.  Удалить посторонние предметы из полостей колеса насоса

  Пожарный насос сначала подает воду, затем его производительность уменьшается. Стрелка манометра сильно колеблется

  1.  Появились неплотности во всасывающей линии, расслоение рукава, засорилась всасывающая сетка.
  2.  Засорились каналы рабочего колеса.
  3.  Неплотности в сальниках пожарного насоса
  1.  Найти неплотности и устранить, заменить рукав, очистить сетку.
  2.  Разобрать пожарный насос, очистить каналы.
  3.  Подвернуть крышку масленки, заменить сальники

Окончание табл. 2.4

Признаки
неисправностей

Причины неисправностей

Способы устранения

  Пожарный насос не создает необходимого напора

  1. Частично засорены каналы рабочего колеса.
  2. Большой износ уплотнительных колец.
  3. Подсос воздуха.

  1. Повреждение лопаток рабочего колеса
  1. Разобрать насос, очистить каналы.
  2. Разобрать насос, заменить кольца.
  3. Устранить подсос воздуха.
  4. Разобрать насос, заменить колесо

  Пеносмеситель не подает пенообразователь

  1. Засорен трубопровод из

бака к пеносмесителю.

  1. Засорены отверстия дозатора

   1. Разобрать, прочистить трубопровод.

2. Разобрать дозатор, прочистить его отверстия

  Газовая сирена работает плохо, ослаблен звук

  1. Засорены каналы распределителя газа и резонатора.
  2. Не полностью перекрывается заслонкой выпускной трубопровод
  1. Очистить каналы и резонатор.
  2. Отрегулировать длину тяги. Разобрать, очистить заслонку

  Газовая сирена работает после выключения

  1. Ослабла или сломалась пружина заслонки.
  2. Нарушена регулировка длины элементов тяги
  1. Заменить пружину.

  1. Отрегулировать тягу

  Распределительный клапан лафетного ствола и клапан водопенных коммуникаций не открываются при открывании кранов на колонке

  1. Мало давление воздуха в тормозной системе.
  2. Негерметичны соединения клапанов, кранов, трубопроводов.
  3. Неисправен клапан-ограничитель
  1. Повысить напор в системе.
  2. Подтянуть гайки штуцеров, заменить прокладки.

  1. Разобрать, исправить

Неисправности насосных установок ПЦН. Признаки возможных неисправностей, приводящих к отказам, их причины и способы устранения приводятся в табл. 2.5.

Таблица 2.5

Признаки
неисправностей

Причины неисправностей

Способы устранения

  1. Вакуумный насос не включается
  1. Износ обрезиненного шкива привода вакуумного насоса

1. Отрегулировать зазор «Д» между толкателем механизма отключения и упором кронштейна вакуумного насоса (1,5-2 мм).

2. При полном износе резины (выдавливание резины за металлический обод – менее 0,5 мм) заменить шкив.

  1. Вакуумный насос работает, разрежение недостаточное
  1. Подсос воздуха:
  2. во всасывающей линии;

б) через незакрытые сливные краны;

в) через масляный бак (при полном отсутствии масла);

г) через поврежденные вакуумные трубопроводы.

  1. Проскальзывание катков вследствие:

а) попадания масла на поверхность трения;

б) недостаточного усилия прижатия катков.

  1. Недостаточная подача смазки в вакуумный насос.
  2. Неисправность обратного падающего клапана – зависание или неплотное прилегание к седлу

1. Проверить соединительные головки всасывающих рукавов, обнаружить и устранить неплотности в насосе, заправить масляный бак.

а) обезжирить катки бензином и просушить.

б) отрегулировать усилие прижатия.

3. Проверить расход масла и состояние маслопровода, при необходимости промыть маслопровод и отрегулировать расход масла.

4. Обнаружить и устранить неисправность падающего клапана. До устранения неисправности забор воды производить при закрытых вентилях

  1. Вакуумный насос работает, разрежение в норме, вода в насос не поступает
  1. Засорена всасывающая сетка.

  1. Расслоение всасывающих рукавов
  1. Очистить всасывающую сетку.
  2. Заменить неисправные рукава
  1. Вакуумный насос не отключается при давлении на выходе более
    0,4 МПа (4 кгс/см2)

(на ПЦНВ 20/200 – 1,2 МПа)

  1. Большое зазор «Д» между штоком механизма отключения и рычагом.
  2. Большое усилие прижатия катков привода вакуумного насоса
  1. Отрегулировать зазор.

2. Отрегулировать усилие прижатия катков

5. При работе насоса происходит частое включение и отключение вакуумного насоса

  1. Срыв напора в результате недостаточного заглубления всасывающей сетки.
  2. Срыв напора в результате неисправности вакуумного затвора (заклинивание клапана)
  1. Обеспечить погружение всасывающей сетки на глубину не менее 300 мм.
  2. Устранить неисправность вакуумного затвора, до устранения неисправности допускается в качестве вакуумного затвора исполь-
    зовать вакуумный кран –
    закрывать вручную при по-
    явлении давления на выхо-
    де в пределах от 2,5 до
    3,5 кгс/см2

На ПЦНВ-20/200 (дополнительно)

3. Срыв напора в результате несвоевременного срабатывания вакуумного затвора вследствие разгерметизации гидропривода управления

3. Проверить уровень жидкости в гидроприводе. Установить места неплотностей, устранить их

6. При работе насоса снизилась подача, давление на выходе ниже нормы

  1. Засорена всасывающая сетка.

  1. Засорена защитная сетка на входе в насос

3. Подача насоса превышает допустимую для данной высоты всасывания.

4. Засорены каналы рабочих колес

1. Проверить всасывающую сетку.

2. Проверить целостность всасывающей сетки, при необходимости очистить защитную сетку на входе в насос.

3. Уменьшить подачу (число работающих стволов или частоту вращения).

4. Очистить каналы

7. При работе насоса наблюдаются стуки и вибрация

1. Ослабли болты крепления насоса.

2. Изношены подшипники насоса.

3. В полость насоса попали посторонние предметы.

4. Повреждено рабочее колесо

1. Подтянуть болты.

2.Изношенные подшипники заменить новыми.

3. Удалить посторонние предметы.

4. Заменить рабочее колесо

8. Вал насоса не прокручивается

1. В летний период – засорение насоса.

2. В зимний период – примерзание рабочего колеса и уплотнений

1. Очистить внутреннюю

полость насоса.

2. Прогреть насос теплым воздухом или горячей водой

9. Из дренажного

отделения насоса струйкой течет вода

1. Нарушение герметичности

концевого уплотнения вала

1. Заменить изношенные детали (узлы) концевого уплотнения

10. Не поворачивается рукоятка дозатора

1. Появление на поверхностях трения кристаллических отложений и продуктов коррозии в результате плохой промывки

1. Разобрать дозатор, очистить сопрягаемые поверхности от налета

11. Большой расход масла в масляной ванне подшипников вала

1. Износ резиновых манжет

1. Заменить манжеты

12. Вал насоса вращается, стрелка тахометра на нуле

1. Обрыв электрических цепей тахометра

1. Обнаружить и устранить обрыв электрических цепей

13. При включенном эжекторе и открытом дозаторе пенообразователь в насос не поступает

1. Не срабатывает отсекающий клапан дозатора вследствие засорения трубопровода, подающего воду в управляющий клапаном сильфон

1. Прочистить трубопровод (канал)

Дополнительно на ПЦНВ-20/200

14. При работе пеносмесителя ПО в насос не подается или уровень его дозирования недостаточный

1. Разгерметизация привода управления вакуумной системой

2. Заклинивание золотника в клапане пеносмесителя или засорение его полости в результате плохой промывки

1. Обнаружить неплотности, где вытекает жидкость, устранить неплотности, проверить диафрагму вакуумного затвора.

2. Разобрать клапан пеносмесителя и очистить его полость и детали от загрязнений

15. При отсутствии подачи воды индикатор «Подачи нет» не горит

1. Обрыв цепей питания.

2. Перегорел светодиод (лампа).

3. Заклинивание падающего клапана в направляющей.

4. Неисправен магнито-электрический контакт

1. Обнаружить и устранить.

2. Заменить светодиод (лампу).

3. Выявить причины и устранить заклинивание.

4. Заменить магнито-электрический контакт

16. При включении АСД индикатор «АСД питание» не горит, рукоятка дозатора не двигается

1. Обрыв в цепи электропитания «пожарный автомобиль – электронный блок».

2. Недостаточное сцепление фрик-
ционной муфты привода дозатора

1. Обнаружить и устранить обрыв в цепи.

2. Отрегулировать муфту

17. При включении АСД рукоятка дозатора не двигается, индикатор «АСД питание» горит

1. Обрыв в электрической цепи «электронный блок – электродвигатель» дозатора

2. Недостаточное сцепление фрикционной муфты привода дозатора

1. Обнаружить и устранить обрыв цепи

2. Отрегулировать муфты

18. При дозировании пенообразователя в автоматическом режиме качество пены неудовлетворительное, рукоятка дозатора не доходит до положения, соответствующего количеству работающих пеногенераторов

1. Высокая жесткость подаваемой насосом воды

1. При помощи корректора увеличить концентрацию пенообразователя или перейти на ручное дозирование

Признаки
неисправностей

Причины неисправностей

Способы устранения

19. Повышенный расход пенообразователя при  дозировании в автоматическом режиме, рукоятка дозатора останавливается в положении, соответствующем большему количеству пеногенераторов, чем подключено в действительности

1. Загрязнение электродов датчика концентрации пенообразователя

1. Очистить электроды датчика концентрации

20. При дозировании пенообразователя в автоматическом режиме рукоятка дозатора доходит до упора (положение «5-
6 %»), а индикатор «АСД норма» не загорается, и электродвигатель дозатора продолжает вращаться

1. Не открывается отсекающий клапан дозатора, вследствие засорения трубопровода, подающего воду в управляющий клапаном сильфон.

2. Если неисправность появляется только в случае работы с большим количеством ГПС-600 (4-
5 шт.), причина – увеличение гидравлического сопротивления магистрали пенообразователя в результате ее засорения.

3. Обрыв электрической цепи «электронный блок – датчик концентрации»

1. Прочистить трубопровод (канал).

2. При очередном ТО прочистить магистраль пенообразователя, в том числе полости дозатора.

3. Обнаружить и устранить обрыв цепи

21. Не работает счетчик времени наработки

1. Обрыв цепи электропитания между первичным пенообразователем и электронным блоком или между электронным блоком и показывающим прибором на панели.

2. Неисправность электронного блока

3. Неисправен счетчик времени наработки

1. Обнаружить и устранить обрыв цепи.

2. Заменить или отремонтировать электронный блок.

3. Заменить счетчик

В насосе ПЦНВ-4/400 отсутствует система всасывания, но в его конструкции имеются два клапана: перепускной и отсекающий. Неисправности в них служат нарушением нормальной работы насоса. Их перечень приводится в табл. 2.6.

Таблица 2.6

Признаки
неисправностей

Причины неисправностей

Способы устранения

1. Из дренажного отверстия насоса струйкой течет вода

1. Нарушение герметичности концевого уплотнения

1. Разобрать насос, заменить изношенные детали уплотнения

2. При работе насоса его корпус сильно нагревается

1. Засорены проходные отверстия в перепускном и отсекающем клапанах

1. Снять клапаны, разобрать и устранить неисправности

3. Снизилась подача воды, давление в напорном коллекторе в норме

1. Заклинивание перепускного клапана

1. Снять клапан, устранить неисправность

4. При включенном эжекторе, открытом дозаторе и стволе-распыли-
теле пенообразователь в насос не поступает

1. Неисправен перепускной
клапан.

2. Заклинивание отсекающего клапана

1. Снять клапаны, устранить обнаруженные неисправности

5. Уровень дозирования пенообразователя ниже нормы

1. Засорение магистрали пенообразователя, в частности, проточной полости отсекающего клапана

1. Разобрать и прочистить все элементы магистрали пенообразователя

В насосе ПЦНВ-4/400 могут возникать и другие неисправности, но они в большинстве случаев аналогичны неисправностям других насосов этой серии.

Техническое обслуживание (ТО) насосных установок. Техническое обслуживание – это комплекс операций по поддержанию работоспособности или исправности изделий при использовании по назначению. В ГПС проводят ряд ТО: ежедневное ТО (ЕТО), ТО-1 и ТО-2 после общего пробега пожарного автомобиля, равного соответственно 1500 и 7000 км. Кроме того, их обслуживание на пожаре и после пожара.

ТО на пожаре. Периодически контролировать герметичность насосной установки по утечке воды через соединения и сальники.

На насосах ПМ каждый час работы подается смазка в сальники через колпачковую масленку.

Поддерживать положительную температуру в насосном отсеке.

На насосах ПЦН контролировать подачу воды и не допускать перегрева насоса.

ТО после пожара. Слить воду из насоса. Зимой – из трубки, соединяющей ПН с газоструйным вакуум-аппаратом, удалить воду кратковременным его включением.

После тушения пожара пеной промыть водой систему подачи пенообразователя и насос.

Работы по регламентированному техническому обслуживанию приводятся в табл. 2.7.

Таблица 2.7

Вид обслуживания

ПН-40УВ

ПЦНН-40/400 и ПЦНВ-20/200

ПЦНВ-4/400

ЕТО

1. Проверить работоспособность кранов и вентилей, целостность
коммуникаций и уровень масла в картерах

2. Проверить работоспособность вакуумных систем

(проверка герметичности)

2. Очистить сетку во входе в насос

ТО-1

1. Выполняют объем ЕТО

2. Проверяют состояние и управляемость привода вакуумного аппарата из насосного отделения.

  1. Разбирают пеносмеситель и очищают его, проверяют состояние кранов.
  2. Проверяют крепление насоса

2. Проверяют затяжку креплений всех агрегатов.

3. Проверяют состояние элементов привода вакуумных насосов.

4. Проверяют производительность вакуумного насоса.

5. Заменяют масло в масляных ваннах опор вала

2. Проверяют работоспособность перепускного клапана

ТО-2

1. Выполняют объем работ ТО-1

2. Проверяют техническое состояние насоса и уровень дозирования пенообразователя.

3. Проверяют работоспособность контрольно-измерительных приборов

2. Смазывают винты напорных вентилей.

3. Проверяют уровень дозирования пенообразователя и очищают пеномагистрали насоса (при необходимости)

2. Заменяют масло в масляных ваннах опор вала


 

А также другие работы, которые могут Вас заинтересовать

19914. Биологическое действие ионизирующих излучений 372 KB
  PAGE 21 Тема 6. Биологическое действие ионизирующих излучений Вопросы: 1.Этапы действия ионизирующих излучений. Механизм биологического действия и.и. 2.Действие доз радиации 3.Радионуклиды и растительный мир 4.Влияние радионуклидов на животн...
19915. ПРИНЦИПЫ И КРИТЕРИИ РАДИАЦИОННОЙ БЕЗОПАСНОСТИ (Радиационная гигиена) 291.5 KB
  Тема 7. ПРИНЦИПЫ И КРИТЕРИИ РАДИАЦИОННОЙ БЕЗОПАСНОСТИ Радиационная гигиена Вопросы: 1.Нормы радиационной безопасности НРБ2000. 2.Республиканские допустимые уровни содержания р.н. в продуктах питания. 3.Способы защиты человека от радиаци
19916. Авария на Чернобыльской АЭС и ее последствия для Республики Беларусь 84.5 KB
  Тема 8. Авария на Чернобыльской АЭС и ее последствия для Республики Беларусь Вопросы: 1.Принцип работы ядерного реактора 2.Авария на ЧАЭС и ее причины. 3.Последствия аварии на ЧАЭС для Республики Беларусь 8.1. Принцип работы ядерного реа
19917. Радиационная безопасность 7.84 MB
  МЕТОДИЧЕСКИЕ УКАЗАНИЯ к лабораторным работам по курсу €œРадиационная безопасность€ для студентов всех специальностей дневной формы обучения. Статистическая обработка результатов имеет две основные задачи. Определение плотности потока бета-излучения с поверхности. Определение мощности экспозиционной и эквивалентной доз прибором «РД-1503»...
19918. Вводная лекция. Предмет экономики предприятия 19.99 KB
  Тема: Вводная лекция. Предмет экономики предприятия. Вопросы по лекции: Экономика предприятия как самостоятельная экономическая дисциплина. Эволюция развития и функции теории управления предприятия. Объект изучения экономики предприятия. Миссия и цели
19919. Технологический процесс 22.39 KB
  Лекция №2 Тема: Технологический процесс Технологический процесс это совокупность действий по изменению и определению состояния. Производственные процессы различают по различным признакам: По назначению Основные Вспомогательные Обслуживающие
19920. Хозяйственные ресурсы предприятия. Основные фонды предприятия 21.47 KB
  Лекция №3 Тема: Хозяйственные ресурсы предприятия. Основные фонды предприятия. План: Понятия производственных ресурсов Экономическая сущность состав классификация и структура основных фондов ОФ. Экономическая оценка ОЦ ОФ. Износ ОФ Амортизация ...
19921. Экономическая оценка основных фондов 30.67 KB
  Лекция №4 Тема: Экономическая оценка основных фондов. Стоимостные показатели дают возможность определить общий объем динамику износ начислить амортизацию рассчитать себестоимость продукции рентабельность предприятия. В зависимости от времени оценки характер
19922. Основные фонды предприятия, продолжение 30.29 KB
  Лекция №5 Тема: Основные фонды предприятия продолжение Т.к. в течении года состав ОФ постоянно меняется то постоянно меняется и их совокупная стоимость. Для учета движения ОФ рассчитывается их среднегодовая стоимость. формула 1 стоимость основных фондов на