98439

Кільце многочленів від багатьох змінних.Симетричні многочлени від невідомих

Лекция

Математика и математический анализ

Познайомити з основними симетричними многочленами; довести теорему і супутні леми про симетричні многочлени. Поняття симетричного многочлена та їх різновиди. Леми про симетричні многочлени. Основна теорема про симетричні многочлени.

Украинкский

2017-02-21

383 KB

9 чел.

Лекція №5

Тема. Кільце многочленів від багатьох змінних.Симетричні многочлени від  невідомих.

Мета вивчання:

  • познайомити з основними симетричними многочленами;
  • довести теорему і супутні леми про симетричні многочлени.

План.

  1. Поняття симетричного многочлена та їх різновиди.
  2. Леми про симетричні многочлени.
  3. Основна теорема про симетричні многочлени.

Література.[3], стор.312-328.

Зміст лекції.

1. Многочленом від змінних , ,..., (n>1) над полем  називається сума кінцевого числа доданків  виду

, (1)

де  - елемент поляP, а ,..., - цілі невід’ємні числа, причому під  при =0 розуміють 1. Позначають:ƒ( ).

При  вводять поняттястепеня многочлена  щодо деякої  змінної абостепеня члена по сукупності змінних.

Степенем члена (1) щодо змінної  називається число , астепенем члена по сукупності змінних називають суму + (приА ).

Степенем многочлена ƒ( ) щодо змінної  (1) називається найвищий зі степенів його членів відносно .

Степенем многочлена ƒ( ) по сукупності змінних називається найвища зі степенів його членів по сукупності змінних.

Якщо у даного многочлена всі члени мають однаковий степіньs по сукупності змінних, то він називаєтьсяоднорідним у степеніs многочленом абоформою степеняs.

Якщо у даного многочлена всі коефіцієнти – нулі, то він називаєтьсянуль – многочленом і про його степінь не говорять.

На множині усіх многочленів від змінних  над полемР визначені відношення рівності, операції додавання і множення. Щодо цих операцій множина многочленів утворює кільце, до того ж асоціативно – комутативне, яке позначають:Р

У випадку завдання многочлена від однієї змінної була можливість розташування членів многочлена у визначеному порядку, або по спаданню степенів змінної, або по зростанню.

У випадку многочлена від кількох змінних такої можливості немає, тому що у даного многочлена може бути кілька многочленів одного і того самого степеня. Для упорядкування запису многочлена від кількох змінних використовується лексико – графічний запис многочлена – по спаданню висоти члена многочлена.

Розглянемо два члени многочлена того самого порядку з ненульовими коефіцієнтами:

(А 0)

(В 0)

Говорять, що перший член вище другого, якщо перша ненульова різниця виду  додатна, тобто 0.

Розташування членів многочлена  в порядку спадання висот називаєтьсялексико – графічним записом.

Приклад. Нехай дано многочлен ƒ( )=2-5 + +. Представимо його в лексико - графічному записі:

ƒ( )=2 -5 + +.

Теорема.Вищий член добутку двох многочленів дорівнює добутку вищих членів цих многочленів.

# Маємо два многочлени над полемР: ƒ( ), g( ). Виділимо вищий член першого:

.

Виділимо його довільний член:

.

Те що перший член вище другого означає: 0 ( а всі попередні – нульові)

Для g( ) аналогічно маємо:

, ( )>0. Покажемо що член  вищий за .

Покажемо спочатку, що  вищий за .

має вигляд:

                                                                                                             (2)

має вигляд:

Будемо вважати, що . З умов: випливає:

=0=0

=0=0

---------------------------------------

=0=0

>00.

Порівнюючи показники в (2) одержимо:

0

0

           і т.д.

Якщоi=j  то процес продовжується, якщоi<j, то потрібний результат.

Висновок. Дійсно,  вищий за . Аналогічно перевіряється що  вищий за інші добутки.#

  1. Означення.Симетричним многочленом від  невідомих називається такий многочлен, який не змінюється при будь-якій взаємозаміні невідомих.

З означення слідує, що симетричні многочлени – окремий випадок многочленів від  невідомих.

Сума та добуток симетричних многочленів є симетричний многочлен, звідси зазначаємо, що сукупність усіх симетричних многочленів від  невідомих над полемР утворює кільце, до того ж асоціативно-комутативне.

Приклад.  є симетричним многочленом ( не змінюється при будь-якій взаємозаміні невідомих )

Серед усіх симетричних многочленів від  неівдомих особливо виділяють часткові випадки:

I Основні (елементарні) симетричні  многочлени:

----------------------------------------------

.

IIСтепеневі суми:

----------------------------

IIIМногочленні многочлени:

Означення.Многочленним многочленом від  невідомих називається такий многочлен, який містить вказаний вищий член і усі ті, і тільки ті члени, які виходять з нього шляхом різноманітних взаємозамін невідомих.

Приклад.  від трьох невідомих:  з вищим членом  має вигляд:

.

  1. Лема 1.Якими б не були комплексні числа , існують комплексні числа  такі, що

------------------------------

Побудуємо многочлен .

Цей многочлен має степінь , отже в комплексній області він має рівно  комплексних коренів (ураховуючи кратні). Позначимо їх , тоді, використовуючи формули Вієта, що зв’язують корені многочлена з коефіцієнтами, одержуємо:

.

Лема 2.У вищому члені симетричного многочлена показники при невідомих не зростають.

Нехай  - симетричний многочлен від . Нехай  - його вищий член. Покажемо, що .

Тому що многочлен симетричний, значить він містить члени, які виходять з вищого шляхом взаємозаміни невідомих, тому що при взаємозаміні він не змінюється.

. Зіставляючи цей член з підкресленим одержимо: . Аналогічно міркуючи, одержимо, що  і т.д.

  1. Теорема.Усякий симетричний многочлен  може бути поданий у вигляді многочлена від основних симетричних.
    • Нехай  - многочлен, а   - його вищий член.

На підставі леми 2: .

Побудуємо добуток:

(3)

де  - цілі невід’ємні числа,

- сим. многочлен з вищим членом - ;

- ----//----//----//----//---- ;

- ----//----//----//----//---- ;

------------------------------------------------------

Добуток (3) є симетричним многочленом від  і його вищий член (за теоремою про вищий член добутку двох многочленів) є

.

Очевидно, що якщо вимогти, щоб

   -------------------

і усе виконується одночасно, то вищий член побудованого симетричного многочлена і вищий член даного симетричного многочлена з’являться однаковими.

- усі одержані числа цілі, невід’ємні.

Висновок:завжди можна побудувати (3), у якого вищий член співпадає з вищим членом даного. Тому різниця між даним та побудованим многочленами:

- симетричний многочлен, вищий член якого має нижчий степінь, ніж вищий член даного. Нехай цим вищим членом буде

,

тому

- симетричний многочлен, вищий член якого нижче вищого члена  і т.д. на -му кроці прийдемо до 0-многочлена:

.

Додаючи усі одержані рівності, отримаємо:

Отже, .

Приклади. 1) Симетричний многочлен  від невідомих виразити через елементарні симетричні многочлени.

Розв’язування. Тут вищий член  і тому , тобто

, звідки

.

Тому .

Зауваження. У більш складних завданнях доцільно спочатку встановити, які члени можуть увійти до виразу даного многочлена через основні елементарні, а потім знайти коефіцієнти цих членів методом невизначених коефіцієнтів.

2) Знайти вираз для симетричного многочлена .

Розв’язування. Відомо (див. доведення основної теореми), що члени шуканого многочлена  визначаються через вищі члени симетричних многочленів , причому ці вищі члени нижчі вищого члена даного многочлена , тобто нижчі . Знайдемо усі добутки , що задовольняють наступним умовам: 1) вони нижчі за член ; 2) вони можуть бути вищими членами симетричних многочленів, тобто задовольняють нерівностям: ; 3) за сукупністю невідомих вони мають степінь 4 (тому що усі многочлени  мають, як ми знаємо, той самий степінь, що і однорідний многочлен ). Випишемо лише відповідні комбінації показників і вкажемо поруч ті добутки степенів , які ними визначаються, одержимо таблицю:

22000

21100

11110

Таким чином, многочлен  має вигляд

.

Коефіцієнт при  ми поклали рівним одиниці, тому що цей член визначений як вищий член многочлена  і має (див. доведення основної теореми) такий самий коефіцієнт. КоефіцієнтиА іВ ми знайдемо так. Покладемо  Легко бачити, що при цих значеннях невідомих многочлен  одержить значення 3, а многочлени  - відповідно значення 3, 3, 1, і 0. Тому

,

ЗвідкиА=-2. Покладемо тепер  Значення многочленів ,  будуть рівні відповідно 6, 4, 6, 4, 1. Тому

,

ЗвідкиВ=2. Таким чином, шуканим виразом для  буде

3) Знайти суму кубів коренів многочлена

.

Розв’язування. Для розв’язання цієї задачі знайдемо вираз через елементарні симетричні многочлени для симетричного многочлена . Застосовуючи той самий метод, як і у попередньому прикладі, одержимо таблицю:

3000

2100

1110

і тому

.

Покладаючи спочатку , а потім , , ми одержимо , тобто

(4)

Для знаходження суми кубів коренів  треба, ураховуючи формули Вієта, в виразі (4) замінити , через коефіцієнт при , тобто через 2, і нарешті, замінити  через коефіцієнти при  з протилежним знаком, тобто через –1. Таким чином, сума кубів дорівнюватиме

.


 

А также другие работы, которые могут Вас заинтересовать

31864. ВЕРСИЯ ИНТЕРФЕЙСА С ОПТРОННОЙ РАЗВЯЗКОЙ 57 KB
  Какими бы параметрами ни обладал оптрон в нем всегда используется оптический принцип передачи сигналов без всякой гальванической связи. Для передачи излучения от источника к приемнику используются различные технологии описание которых выходит за рамки данной главы. Особенности этих технологий определяют основные характеристики оптрона обеспечивая в частности необходимый компромисс между степенью изоляции коэффициентом передачи и быстродействием. имеет напряжение изоляции 1500 В полосу пропускания 300 кГц и коэффициент передачи тока...
31867. МИКРОСХЕМА АЦП К1113ПВ1 34 KB
  МИКРОСХЕМА АЦП К1113ПВ1 Полупроводниковая БИС функционально завершенного АЦП типа КП13ПВ1 А Б В предназначена для применения в электронной аппаратуре в составе блоков аналогового ввода. Она содержит все функциональные узлы АЦП ПП включая КН ЦАП РПП ИОН ГТИ выходной буферный регистр с тремя состояниями схемы управления рис. Несколько АЦП могут обслуживать один МП и наоборот. По уровням входных и выходных логических сигналов АЦП сопрягается с цифровыми ТТЛ ИС.
31868. Редагування растрових зображень 74.5 KB
  У класі форми обявити обєкти доступні для різних методів PictureBox pictureBox1; Lbel lbel1; Point spotClicked; 6.Size = new Size640 480; Завантажити малюнок в елемент PictureBox і вставити у форму додати до проекту відповідну папку з малюнком або вказати адресу малюнка pictureBox1 = new PictureBox; pictureBox1.jpg ; pictureBox1.SizeMode = PictureBoxSizeMode.
31869. История возникновения и развития учета 27 KB
  Историю развития и возникновения учета можно условно разделить на несколько периодов. Одним из этапов развития учета связан с Древним Римом. На Руси упорядочивание учета началось с конца IX в.
31870. Здоров’я людини. Здоровий спосіб життя 77.5 KB
  Вважається, що здоров’я – це нормальний стан організму, який характеризується оптимальною саморегуляцією, повною узгодженістю при функціонуванні всіх органів та систем, рівновагою поміж організмом та зовнішнім середовищем при відсутності хворобливих проявів. Тому основною ознакою здоров’я є здатність до значної пристосованості організму до впливів різноманітних чинників зовнішнього
31872. ЭНДОСКОПИЧЕСКАЯ ДИАГНОСТИКА И ЛЕЧЕНИЕ ГАСТРОЭЗОФАГЕАЛЬНОЙ РЕФЛЮКСНОЙ БОЛЕЗНИ 2.34 MB
  Ацидометрия и исследование моторнодвигательной функции пищевода и желудка. Необходимость дальнейшего изучения различных сторон этиопатогенеза данного заболевания не вызывает сомнений так как до конца не определены вопросы диагностики и выбор оптимального метода лечения в связи с чем целесообразным представляется исследование морфофункционального статуса пищевода у больных данным заболеванием при неэффективности проводимого лечения. В доступной зарубежной и отечественной литературе нет единого мнения о причинах способствующих...