98736

Черные дыры. Эффект Хоккинга. Испарение чёрных дыр

Курсовая

Физика

Среди великого разнообразия небесных тел особое место занимает класс объектов, называемых черными дырами (ЧД). Их поле тяготения столь велико, что никакая частица, включая частицу (квант) света, не может вырваться изнутри такого объекта и уйти на бесконечность.

Русский

2015-11-06

40.83 KB

1 чел.

Курсовая работа

по дисциплине

«Квантовая теория и статистическая физика»

Черные дыры. Эффект Хоккинга.

Испарение чёрных дыр.


Введение.

Среди великого разнообразия небесных тел особое место занимает класс объектов, называемых черными дырами (ЧД). Их поле тяготения столь велико, что никакая частица, включая частицу (квант) света, не может вырваться изнутри такого объекта и уйти на бесконечность. Поэтому его поверхность действует как своего рода клапан, пропускающий вещество лишь в одну сторону – внутрь ЧД (отсюда и это название: вещество валится в ЧД как в дыру, а свет из нее выйти не в состоянии). Это уникальное свойство черных дыр прямо ведет к уникальному факту – внешнему наблюдателю оно представляется как горячее тело, служащее источником теплового излучения. Это и другие тепловые свойства черных дыр описываются специальной теорией – термодинамикой черных дыр.

Черные дыры.

Еще в 1795 г. великий французский математик Пьер-Симон Лаплас теоретическим путем пришел к выводу, что свет не может уйти от тела, если оно достаточно массивно или достаточно сильно сжато. Даже из ньютоновской теории следует, что если скорость убегания для какого-либо объекта превышает величину скорости света, то этот объект для внешнего наблюдателя будет казаться абсолютно черным. Но на протяжении почти двухсот лет никому не приходило в голову, что в природе могут действительно существовать черные дыры. Однако к середине 1960-х годов астрофизикам удалось рассчитать подробно структуру звезд и ход их эволюции. Теперь, зная больше, астрономы отчетливо понимают, что не может существовать устойчивых мертвых звезд, масса которых превышала бы три солнечные массы. Поскольку во Вселенной звезды, обладающие намного большими массами, - широко распространенное явление, астрофизики стали всерьез обсуждать возможность существования черных дыр, рассеянных повсюду во Вселенной.

Черная дыра - это один из трех возможных вариантов конечной стадии эволюции звезд. Однако в отличие от белых карликов и нейтронных звезд черная дыра - это пустое место. Это то, что остается после катастрофического гравитационного коллапса массивной звезды, когда она умирает. При коллапсе - катастрофическом сжатии звезды - напряженность силы тяготения над ее поверхностью становится настолько чудовищно большой, что окружающее звезду пространство-время свертывается, и звезда исчезает из Вселенной; остается только исключительно сильно искривленная область пространства-времени.

Небесные тела со свойствами черных дыр рассматривались в рамках механики Ньютона еще в XVIII веке как объекты, вторая космическая скорость которых, , превышает скорость света c. Здесь G – постоянная тяготения, M – масса объекта, R – его радиус. Приведенному условию удовлетворяет объект, масса которого сконцентрирована в очень малом объеме с радиусом

                               (1)

где  – гравитационный радиус тела,  – масса Солнца. Сферу радиуса  называют горизонтом событий: именно ею ограничено поле зрения внешнего наблюдателя, лишенного информации о ее внутренней части. Условие (1) оказалось справедливым и в рамках общей теории относительности.

Для подавляющей части небесных тел условие (1) нарушено. Так, для Солнца (радиус 7· км) и Земли (масса 6· г, радиус 6· км) величина   составляет соответственно всего 3 км и ~1 см. Еще контрастнее соответствующие цифры для земных объектов. Поэтому черная дыра возникает лишь при крайне необычных условиях сверхвысокой плотности вещества. Такие условия имеются прежде всего на конечном этапе эволюции звезд с массой, превышающей примерно 3; неудержимое гравитационное сжатие такой звезды – коллапс – ведет в конечном счете к выполнению условия (1) и к образованию черной дыры звездной массы. Массы таких объектов лежат в диапазоне от 3 до 100. Более тяжелые массивные и сверхмассивные черные дыры с массами до  возникают в результате коллапса больших масс газа в центрах шаровых скоплений, в ядрах галактик и в квазарах. Легкие черные дыры с массами до 3 могли бы образоваться в результате нарастания флуктуаций плотности сверхсжатого вещества ранней Вселенной (первичные ЧД).

Абсолютно твердых доказательств существования черных дыр в космосе пока нет. Однако большинство ученых сходится во мнении, что рентгеновские источники в некоторых двойных системах представляют собой звездные черные дыры, а активность многих (если не всех) ядер галактик и квазаров – результат существования массивных и сверхмассивных черных дыр в центрах этих объектов.

Предшественник черной дыры (массивная звезда, газ, флуктуация плотности) обладает множеством наблюдаемых параметров, относящихся как к его глобальным свойствам, так и к характеристикам его внутреннего строения. Информация о подавляющей части таких параметров теряется внешним наблюдателем в процессе образования черной дыры, которая не выпускает из себя никаких сигналов, характеризующих состав и структуру вещества, распределение электрических токов и пр. Этот факт образно описывают словами: черная дыра не имеет волос. Фактически наблюдатель может измерить лишь такие глобальные характеристики черной дыры, как ее масса M, вращательный момент m и полный электрический заряд Q .

Эффект Хокинга

Нарисованная картина черной дыры носит классический, неквантовый характер. Квантовая механика вносит в нее некоторые коррективы: при сохранении горизонта событий черная дыра перестает быть "черной", становясь источником излучения. Природа этого излучения та же, что и у электронно-позитронных пар, рождаемых сильным электрическим полем, которое увеличивает энергию виртуальных (короткоживущих) пар в вакууме, превращая их в реальные (долгоживущие). Аналогичным образом рождает пары (в том числе и пары фотонов) и сильное поле тяготения черной дыры, действующее на частицы любого сорта. Одна из компонент пары становится реальной частицей снаружи (и вблизи) горизонта событий и, имея положительную энергию, может уйти в бесконечность; другая частица появляется внутри (и вблизи) горизонта и падает с отрицательной энергией внутрь черной дыры (см. рис. 1). В итоге черная дыра становится источником непрерывного потока частиц, уходящего в бесконечность. При формировании такого излучения никакая частица не пересекает горизонта событий, который тем самым по-прежнему обладает свойствами клапана. 

Рис. 1. Рождение пар частиц в гравитационном поле черной дыры. а – горизонт событий, область черной дыры заштрихована

В 1974-1975 годах английский теоретик С. Хокинг проводил вычисления характеристик излучения черных дыр, руководствуясь нарисованной выше физической картиной. Он обнаружил, что свойства такого излучения в точности такие же, как у излучения горячего черного тела радиуса  нагретого до температуры (в кельвинах)

T ≈ 0,5· (/M).                             (2)

В описанном явлении, которое называют эффектом Хокинга, температура обратно пропорциональна массе. В процессе излучения масса черной дыры уменьшается, а ее температура растет, что усиливает излучение и тем самым ускоряет убыль массы. Поэтому со временем черная дыра "разгорается", ее температура быстро растет и за конечное время (в секундах)

t ≈                           (3)

черная дыра прекращает существование, исчерпав всю свою массу.

Существенно, что последние мгновения перед исчезновением черной дыры будут протекать в режиме мощного взрыва с выделением энергии порядка эрг за время около 0,1 с. Такие взрывы можно было бы наблюдать и на большом расстоянии от Земли. Это не относится к звездным и тем более к массивным и сверхмассивным черным дырам: уже при массе, равной солнечной, температура составляет ничтожные доли градуса, а время жизни ЧД намного больше времени существования Вселенной (см. формулы (2), (3)). Поэтому взрываться в нашу эпоху способны лишь первичные черные дыры с массой около 1015 г (масса средней горы). К сожалению, такие взрывы до сих пор не наблюдались. 

Как не впечатляющи следствия эффекта Хокинга, с точки зрения теории наибольший интерес представляет природа теплового характера черных дыр – имеем ли мы здесь дело с чисто случайным сходством или же по каким-то причинам черная дыра действительно представляет собой горячее тело.

Заключение

Существование черных дыр, предсказанных в их современном понимании общей теорией относительности, с большой долей вероятности уже подтверждено наблюдениями. Если эта вероятность превратится в полную уверенность, то роль черных дыр как источников активности ядер галактик и квазаров позволит считать их важнейшим элементом мироздания. Не исключено, что еще не открытые первичные черные дыры, если они действительно существуют, имеют куда большую значимость для космофизики, чем это кажется сегодня.

Однако уже сейчас можно говорить и о совсем иной, общефизической, роли черных дыр, обогативших наши общие представления о неорганическом мире. Появление черных дыр как продукта теоретической мысли подняло на новый уровень наше понимание теплоты. С XVIII-XIX века – времени победы кинетической теории над теорией теплорода – наука знала единственный механизм появления тепла – хаотизацию движения частиц, обладающих запасом кинетической энергии. Такой механизм проявляется при трении двух кусков дерева, с помощью чего наши предки добывали огонь, и при химических и ядерных реакциях. С наиболее общей, информационной точки зрения появление тепла во всех таких случаях отвечает утрате микроскопической информации о состоянии частиц горячего тела.

Физика черных дыр указала новый механизм возникновения тепла, когда информация о внутреннем состоянии черной дыры "отсекается" от наблюдателя мощными силами тяготения (а сам этот объект может быть уподоблен "черному ящику" – так в кибернетике называют устройство с неизвестной внутренней структурой). Этот новый механизм действует по схеме:

  черная дыра → черный ящик → черное тело

а также имеет дело с хаосом, которому отвечает равновероятность (с точки зрения внешнего наблюдателя) различных микросостояний внутренней части черной дыры с заданными значениями массы, момента и заряда.


 

А также другие работы, которые могут Вас заинтересовать

14577. Реализация выбора объектов в интерактивной графической программе 52 KB
  Лабораторная работа № 8 Реализация выбора объектов в интерактивной графической программе Цель работы Изучение механизма выбора OpenGL – средства реализующего функции логического устройства типа селектор 1. Выбор и обратная связь Некоторые графические прикладн...
14578. Работа логических узлов ЭВМ 17.42 KB
  Лабораторная работа №4 Работа логических узлов ЭВМ Цель работы: Освоить работу логических узлов ЭВМ. Задание: Построить схему по заданной логической функции. Преобразовать выражение согласно варианту таблица 1 в базисы 2ИНЕ с помощью законов ДеМорган
14579. Основные характеристики процессоров различных архитектур 19.84 KB
  Лабораторная работа №5 Основные характеристики процессоров различных архитектур Цель работы: Выяснить области применения существующих процессоров на основе их архитектур. Выделить основные характеристики существующих процессоров. Задание: ...
14580. Внутренние интерфейсы системной платы 499.09 KB
  Лабораторная работа №7 Внутренние интерфейсы системной платы Цель работы: Изучение внутренних интерфейсов системной платы. Задание 1 Идентифицируйте внутренние интерфейсы системной платы. Задание 2 Дайте сравнительную характеристику внутренних интерфе
14581. Интерфейсы периферийных устройств IDE, SCSI, SATA 253.13 KB
  Лабораторная работа №8 Интерфейсы периферийных устройств IDE SCSI SATA Цель лабораторной работы: – Изучение интерфейсов периферийных устройств; Методические указания: Периферийные шины используются в основном для внешних запоминающих устройств. Интерфей...
14582. Параллельные и последовательные порты и их особенности работы 59.13 KB
  Лабораторная работа №9 Параллельные и последовательные порты и их особенности работы Цель лабораторной работы: – Изучение особенностей работы параллельных и последовательных портов Порт персонального компьютера предназначен для обмена информацией межд
14583. Исследование преобразователя напряжения 383.65 KB
  ПОЯСНИТЕЛЬНАЯ ЗАПИСКА к лабораторной работе Исследование преобразователя напряжения Цель работы: ознакомиться с принципом действия методами испытаний преобразователя и получить инженерные навыки анализа технических параметров преобразователей. Рисунок 1
14584. Исследование импульсного стабилизатора напряжения 170.16 KB
  ПОЯСНИТЕЛЬНАЯ ЗАПИСКА к лабораторной работе Исследование импульсного стабилизатора напряжения Цель работы: ознакомиться с принципом действия методами испытаний импульсного стабилизатора и получить инженерные навыки анализа технических параметров импульсных ст...
14585. Распределение термоэлектронов по скоростям. Контактная разность потен-циалов 417 KB
  ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ № 1 Распределение термоэлектронов по скоростям. Контактная разность потенциалов по дисциплине Физика твердого тела Содержание Цель работы Используемые приборы Схема измерений Результаты экспериментальных иссл