98748

РАСЧЁТ ПЕРЕХОДНЫХ ЭЛЕКТРОМЕХАНИЧЕСКИХ ПРОЦЕССОВ В ЭЛЕКТРИЧЕСКИХ СЕТЯХ

Курсовая

Энергетика

Расчёт динамической устойчивости ЭЭС при неизменной переходной ЭДС генератора. Оценка статической устойчивости электрической системы на основе анализа характеристического уравнения. Оценка устойчивости системы по критерию Гурвица.

Русский

2015-11-06

6.16 MB

0 чел.

Федеральное агентство по образованию

Государственное образовательное учреждение высшего

профессионального образования

ИВАНОВСКИЙ ГОСУДАРСТВЕННЫЙ ЭНЕРГЕТИЧЕСКИЙ

УНИВЕРСИТЕТ имени В.И.Ленина

КУРСОВАЯ РАБОТА

НА ТЕМУ:

" РАСЧЁТ ПЕРЕХОДНЫХ ЭЛЕКТРОМЕХАНИЧЕСКИХ ПРОЦЕССОВ В   ЭЛЕКТРИЧЕСКИХ СЕТЯХ "

Выполнил: студент группы 3-24

Воробьев А.О.

Проверил:

Мартиросян А.А.

Кафедра “Электрические системы”

Иваново 2006 г.

Вариант №161

Дано:

Активные и реактивные мощности эквивалентного генератора станции и нагрузки, напряжения эквивалентного генератора станции.

.                          Параметры системы

Данные эквивалентного генератора.

Синхронные сопротивления:

Переходное сопротивление:

Сопротивление обратной последовательности эквивалентного генератора:

Постоянная инерции:

Коэффициент демпфирования:

Постоянная времени обмотки возбуждения:

Сопротивление трансформатора:

Сопротивление линии:

Сопротивление автотрансформатора:

Параметры системы регулирования возбуждения эквивалентного генератора.

Коэффициент по отклонению напряжения:

Коэффициент по отклонению угла:

Постоянная времени возбудителя и регулятора:

 Данные о коротком замыкании.

Место короткого замыкания точка К1.

Вид КЗ: Двухфазное на землю.

Длительность КЗ                  

Сопротивление нагрузки обратной последовательности:

Сопротивление нагрузки нулевой последовательности:

Сопротивление  нулевой последовательности линии:    

1. Расчёт динамической устойчивости ЭЭС при неизменной переходной ЭДС

                                                             генератора.

1.1 Нормальный режим.

Расчётная переходная ЭДС:

Напряжение в точке подключения нагрузки:

Сопротивление нагрузки, заданной активными и реактивными мощностями:

Сопротивление связи:

Потери мощности:

Активная и реактивная мощности, выдаваемые в систему по двум параллельным ЛЭП:

Напряжение на шинах приёмной системы:

1.2 Аварийный режим.

Двухфазное замыкание на землю в точке

Рассчитываем обратную и нулевую последовательность для нахождения аварийного шунта.

            Обратная последовательность.

Сворачиваем схему к месту короткого замыкания.

Нулевая последовательность.

1.3Построение угловой характеристики

Расчёт ведём на ЭВМ в программе RRSwin1

Изменяя угол находим и вписываем эти значения в таблицу 1.1 .

угол δ

Нормальный режим                    РГ Ι

Аварийный режим                РГ ΙΙ

Послеаварийный режим                  РГ ΙΙΙ

0

0.0794

0.0056

0.101

10

0.356

0.0792

0.333

20

0.622

0.15

0.557

30

0.871

0.217

0.765

40

1.09

0.277

0.951

50

1.29

0.329

1.11

60

1.44

0.371

1.24

70

1.55

0.402

1.33

80

1.61

0.421

1.38

90

1.63

0.426

1.39

100

1.6

0.419

1.37

110

1.52

0.4

1.3

Продолжение таблицы 1.1

120

1.39

0.368

1.19

130

1.23

0.325

1.05

140

1.03

0.273

0.88

150

0.794

0.212

0.684

160

0.539

0.145

0.469

170

0.268

0.073

0.241

180

0.00969

0.000684

0.00782

Пример: Нормальный режим.

Аварийный режим

Послеаварийный режим

По полученным данным для трёх режимов, строим угловую характеристику

Из графика находим предельный угол отключения, уравновешивая площадки ускорения и торможения.

1.4Построение зависимости угла  от времени.

Графически добиваемся - предельный угол отключения.

-устойчивый режим

-неустойчивый режим

Для определения функции 0(t) (угла от времени) воспользуемся методом последовательных интервалов.

Длительность расчетных интервалов примем равной 0,1с.

 

Для 1-го интервала определим

Избыток мощности в начале интервала:    

Угол в начале первого интервала:

Приращение угла за интервал:

Угол к концу первого интервала:

Для 2-го интервала определим

Избыток мощности в начале интервала:    

Приращение угла за интервал:

Угол в начале второго интервала:

Угол к концу второго интервала:

Для 3-го интервала определим

Избыток мощности в начале интервала:    

Приращение угла за интервал:

Угол в начале третьего интервала:

Угол к концу третьего интервала:

Для 4-го интервала определим

Избыток мощности в начале интервала:    

Приращение угла за интервал:

Угол в начале четвёртого интервала:

Угол к концу четвёртого интервала:

График зависимости угла от времени.

Из графика зависимости движения ротора от времени находим и сравниваем его с :

;

Вывод: т.к. время короткого замыкания больше предельного времени отключения  то система будет  динамически неустойчива.

2. Оценка статической устойчивости электрической системы на основе анализа характеристического уравнения.

Исследуемая схема

Представляем генератор синхронными расчетными параметрами:

Определяем синхронную ЭДС:

В программе RRS.win задаем полученную ЭДС и регулируем угол до тех пор пока активная мощность генератора не совпадет с заданной. .Получаем

Исходный режим.

0.84

2.11

0.972

1.0

2,34

1.07

0.84

2.11

0.972

1.0

2,34

1.07

Вариации режима.

0.885

2.37

1.03

1.02

2,457

1.098

0.867

2.1

0.994

0.989

2,34

1.057

для:          

для

Изменение режимных параметров.

Аргументы

0.045

0.058

0.028

0,117

0.02

0.027

0.0022

-0.013

0

-0.011

Знчения частных производных

Аргументы

∂Рг

∂I

∂Uг

∂Eq

∂E'q

∂EQ

0.3846

0.4957

0.1709

1

0.2393

∂δ

0.5744

0,047

-0.234

0

-0.2766

        

Система уравнений первого приближения для рассматриваемой  ЭЭС с неявнополюсным генератором имеет вид:

Таким образом, имеем шесть уравнений первого приближения с шестью переменными. Подставив числовые значения коэффициентов, получим:

Составляем характеристический определитель:

Раскрываем его в пакете MATHCAD и приравниваем к нулю. Получаем  характеристическое уравнение.

Решаем это уравнение в том же пакете MATHCAD:

;  ;     ;  

Таким образом, получили пять корней характеристического уравнения, у одного из них вещественная часть положительна. Следовательно, ЭЭС в заданном исходном режиме статически неустойчива.

2.4 Оценка устойчивости системы по критерию Гурвица.

Составляем определитель по методу Гурвица и определяем его диагональные миноры:

Получили одну перемену знака, что соответствует наличию одного корня с положительной вещественной частью, значит, система статически неустойчива.

Для обеспечения статической устойчивости необходимо либо снизить мощность турбины (уменьшить подачу энергоносителя), либо “поднять” угловую характеристику генератора (за счет увеличения напряжения на его шинах при использовании АРВ). Второй способ имеет ограничения в виде предельного тока возбуждения и условия прочности изоляции.

  1.  Уравнение движения ротора.

  1.  Уравнение связи между синхронной (EQ) и переходной (E`Q) ЭДС.
  2.  Уравнение переходного процесса  в обмотке возбуждения. 
  3.  Уравнение связи параметра регулирования с режимными параметрами (для напряжения генератора) 

  1.  Уравнение регулирования (по отклонению напряжения и производным угла).

Составляем характеристический определитель

Переходный процесс при малых возмущающих воздействиях описывается уравнениями (1), (2), (3), (4), (5). В данных уравнениях переменными являются отклонения , , ,  и .

Раскрываем определитель  в программе Mathcad (все математические вычисления ведём в данной программе) и получаем характеристический полином

Пример решения в программе Mathcad:

Характеристический полином:

Приравниваем его к нулю

Находим корни

Система статически устойчива, так как  все корни лежат в левой части комплексной плоскости.

Проверим статическую устойчивость по критерию Гурвица

Для устойчивости достаточно, чтобы все определители Гурвица были больше нуля и

Составим определитель Гурвица

умножаем обе части уравнения на (-1)

По критерию Гурвица система тоже статически устойчива т.к.  все определители больше  нуля.

3. Определение запаса апериодической статической устойчивости ЭЭС.  

Исследуемая схема

Представим генератор синхронными параметрами

В данном случае утяжеление режима производится увеличением взаимного угла 12 между поперечной осью ротора эквивалентного генератора и вектором напряжения системы UС. Это равносильно увеличению выдаваемой эквивалентным генератором станции активной мощности.

В рассматриваемой системе предел передаваемой активной мощности совпадает с пределом статической устойчивости. Поэтому для выявления запаса устойчивости определяется предел передаваемой активной мощности по зависимости P = f ().

Изменяем угол, с шагом в 150  

Для каждого угла  находим

Т.к АРВ воздействует на

Задаём и рассчитываем несколько режимов в программе RRS.WIN

Первый режим

и  

1 строка таблицы

Следующие строки рассчитываются аналогично

1.373

0.98873

1.0078

1.6178

0.9

1.38

1.0041

1.0099

1.6273

1.626

1.627

0.905

1.4

1.0484

1.016

1.65

1.1258

0.918

1.42

1.0936

1.0221

1.6818

0.427

0.931

1.5

1.283

1.0464

1.7908

-1.484

0.985

Второй режим  

Увеличиваемна .

1 строка таблицы

1.373

1.2734

0.94849

1.6883

6.66

1.1483

1.4

1.3387

0.956

1.725

6.04

1.2565

1.58

1.8136

1.0066

1.97

1.9

1.95

1.325

1.59

1.842

1.0095

1.983

1.658

1.333

1.6

1.8706

1.0123

1.997

1.429

1.342

 Третий режим

Увеличиваемна .

1 строка таблицы

1.373

1.5904

0.877

1.7668

12.52

1.2996

1.6

2.24

0.934

2.076

7.85

1.58

1.85

3.0823

0.9999

2.416

2.446

2.43

1.76

1.87

3.155

1.0053

2.44

2

1.78

1.9

3.27

1.0134

2.485

1.339

1.81

Четвертый режим

Увеличиваемна .

1 строка таблицы

1.9

3.7447

0.91

2.57

9.75

1.898

2.2

5.0356

0.98579

2.97

3.6

2.2

2.23

5.1785

0.99353

3.02

2.968

3

2.235

2.25

5.2728

0.99871

3

2.54

2.256

2.3

5.5124

1.0117

3.115

1.47

2.307

Пятый режим

Увеличиваемна.

1 строка таблицы

2.705

8.3392

0.98428

3.753

3.72

3.735

2.67

2.72

8.43

0.98818

3.77

3.4

2.686

2.73

8.489

0.99078

3.78

3.19

2.696

2.75

8.6097

0.996

3.81

2.7658

2.716

2.8

8.9153

1.0091

3.88

1.6187

2.7676

Шестой режим

Увеличиваемна.

1 строка таблицы

3

10.681

0.96138

4.21

5.6

2.822

3.05

11.021

0.9746

4.278

4.5

2.8707

3.06

11.09

0.97726

4.292

4.3

4.295

2.88

3.1

11.367

0.98792

4.346

3.42

2.919

Седьмой режим

Увеличиваемна.

1 строка таблицы

3.4

14.07

0.96291

4.8

5.479

2.9492

3.43

14.304

0.97118

4.84

4.8

4.83

2.976

3.45

14.461

0.9767

4.875

4.34

2.994

Восьмой режим

Увеличиваемна.

1 строка таблицы

3.78

17.688

0.96268

5.37

5.49

2.9057

3.785

17.732

0.96412

5.3778

5.379

5.378

2.909

3.8

17.862

0.96884

5.398

4.99

2.9218

Девятый режим

Увеличиваемна.

1 строка таблицы

4.1

21.06

0.95534

5.84

6.099

2.653

4.11

21.155

0.95835

5.86

5.85

5.858

2.66

4.13

21.346

0.96437

5.88

5.35

2.674

4.15

21.538

0.9704

5.91

4.865

2.688

Далее графически строим зависимости идля девяти режимов.

Находим точки пересечения графиков и заполняем итоговую таблицу.

38.863

1.38

0.905

1.01

1.627

55

1.58

1.325

1.0066

1.95

70

1.85

1.76

0.999

2.43

85

2.23

2.235

0.993

3

100

2.705

2.67

0.984

3.735

110

3.06

2.88

0.977

4.295

120

3.43

2.976

0.971

4.83

130

3.785

2.909

0.964

5.378

140

4.11

2.66

0.958

5.858

По этой таблице строим графические зависимости: ,,

Коэффициент запаса апериодической статической устойчивости по активной мощности определяется следующим образом:

где: Pпр – предел передаваемой мощности;

       PГ0 – нагрузка генератора по активной мощности в исследуемом режиме.

Нормированное значение коэффициента запаса статической устойчивости составляет 0.2

0.696>0.2

Вывод: Данный режим работы генератора по условиям апериодической статической устойчивости допустим.

4. Исследование устойчивости системы с применением ЭВМ

4.1 Нахождение собственных и взаимных провдимостей

Генератор представляем синхронными параметрами

,,,

Найдем собственную и взаимные проводимости:

Нормальный режим.

Аварийный режим.

Послеаварийный режим.

4.2 Расчёт статической устойчивости на ЭВМ.

В программе SSS.exe проверяем правильность расчётов статической устойчивости произведённых в разделе 2. Для этого заносим в программу исходные данные, производим расчёт, и сравниваем полученные результаты, рассчитанные по программе и во  втором разделе данного курсового проекта.

1.Частные производные уравнений первого приближения:

         

2. Коэффициенты характеристического уравнения:

3. Корни характеристического уравнения:

Сравнивая полученные результаты, видим, что отклонения в полученных результатах не велики. Значит, расчёт произведен, верно.

4.Таблица утяжеления режима:

Находим предельный угол, при котором система статически устойчива утяжеляя систему по углу .Этот угол составил

При угле статическая устойчивость нарушается, о чём свидетельствуют корни характеристического уравнения:

Из третьего раздела данной работы  известно, что , при этом угле мощность которую можно передать системе будет максимальной . Чтобы обеспечить апериодическую устойчивости в данном режиме, будем регулировать коэффициенты К1 и К2 системы АРВ.

Этими коэффициентами я сумел добиться пограничного положения по апериодической статической устойчивости т.к корень .

4.2 Исследуем влияние АРВ на динамическую устойчивость.

Для этого в программе MIC (Dinust) на ЭВМ заносим необходимые данные и произведя расчёт находим предельное время отключения методом подбора без АРВ и с АРВ. После чего сравниваем их  с результатами полученными в первом разделе.

Ниже приведены кривые. Динамическая устойчивость наблюдается при времени равным  0.38 с. (без учета влияния АРВ) и времени 0.45 с (с учета влияния АРВ).

Таким образом, влияние АРВ благоприятно сказывается на динамической устойчивости, увеличивая время предельного отключения, и запас динамической устойчивости.

С АРВ.  Время отключения 0.46 с.

С АРВ.  Время отключения 0.45 с.

 

Без АРВ Время отключения 0.38 с.

Без АРВ Время отключения 0.38 с.

Заключение

  Данная курсовая работа по переходным электромеханическим процессам в электрических системах посвящена анализу синхронной динамической и статической устойчивости простейшей регулируемой электрической системы, эквивалентный генератор которой снабжён автоматическим регулятором возбуждения сильного действия (АРВ) (учитывалось только при анализе статической устойчивости).

При выполнении курсовой работы были выполнены следующие задачи:

  •  уяснен смысл  физических явлений, сопутствующих переходным электромеханическим процессам;
    •  приобретены  навыки  математической формулировки технических задач;
    •  освоены методы расчёта статической и синхронной динамической устойчивости электрических систем (метод интервалов, метод проб);
    •  получены навыки составления характеристического уравнения состояния системы;
    •  освоен метод Гурвица для определения устойчивости системы по характеристическому уравнению;
    •  получены навыки применения современных вычислительных машин для анализа переходных электромеханических процессов.

В процессе выполнения данной работы были получены следующие результаты:

  •  при расчёте синхронной динамической устойчивости выяснили, что исследуемая электрическая система  является динамически устойчивой;
    •  при оценке статической устойчивости системы выяснили, что исследуемая электрическая система является статически устойчивой;
    •  при определении запаса апериодической статической устойчивости системы был получен коэффициент запаса статической устойчивости по активной мощности, равный 0.696 ,что выше нормированного значения коэффициента запаса статической устойчивости по активной мощности.

Навыки, полученные в ходе выполнения работы, будут полезны при проектировании и анализе работы электрических систем.

Список литературы

  1.  Правила устройства электроустановок. – 6-е изд., перераб. и доп. – М.: Энергоатомиздат, 1986. – 648 с.
  2.  Веников В. А. Переходные электромеханические процессы в электрических системах: Учеб. для электроэнергет. спец. вузов. – 4-е изд., перераб. и доп. – М.: Высш. шк., 1985. – 536 с., ил.
  3.  Жданов П. С. Вопросы устойчивости электрических систем / Под ред. Л. А. Жукова. – М., Энергия, 1979. – 456 с., ил.
  4.  Ульянов С. А. Электромагнитные переходные процессы в электрических системах. – М.-Л.: Энергия, 1964. – 704 с.
  5.  Вольдек А. И. Электрические машины. Учебник для студентов высш. техн. учеб. заведений. Изд. 3-е, перераб. Л.: Энергия. 1978. – 832 с.
  6.  Д. П. Ледянкин, Е. В. Шабарин. Расчёт переходных электромеханических процессов в электрических системах: Учеб. пособ. – Иваново, 1979. – 32 с.
  7.  Расчёт и анализ режима несимметричного короткого замыкания в электрической системе: Методические указания / Иван. энерг. ин-т им. В. И. Ленина; Сост. В. П. Гусаков. – Иваново, 1989. – 36 с.
  8.  Расчётные параметры синхронных машин: Методические указания для самостоятельной работы студентов / Иван. энерг. ин-т им. В. И. Ленина; Сост. А. А. Братолюбов. – Иваново, 1990. – 44 с.
  9.  Условные графические обозначения в электрических схемах и на планах: Методические указания по оформлению материалов курсового и дипломного проектирования / Иван. энерг. ин-т им. В. И. Ленина; Сост. С. О. Алексинский, О. А. Бушуева, В. С. Козулин, Н. Л. Петров. – Иваново, 1992. – 32 с.
  10.  Пояснительная записка, чертежи и схемы: Методические указания по оформлению материалов курсового и дипломного проектирования / Иван. энерг. ин-т им. В. И. Ленина; Сост. О. А. Бушуева, О. В. Лебедев. – Иваново, 1992. – 28 с.


 

А также другие работы, которые могут Вас заинтересовать

30852. Физиологическая регуляция функций 44 KB
  Каждая из этих регуляторных систем действует на своём уровне регуляции. Кроме того системы регуляции взаимно подчинены друг другу т. Итак существует взаимосвязь между нервной регуляцией и гуморальной и поэтому когда говорят о регуляции органа то говорят о нейрогуморальной регуляции единой. Уровни нейрогуморальной регуляции I уровень: местная и локальная регуляция происходит на минимальном пространстве касается ограниченного числа клеток единицы десятки.
30853. Системные регуляторные реакции и процессы 24.5 KB
  Адаптация приспособление механизмы которые обеспечивают приспособление организма к действию раздражителей. Адаптация бывает двух видов: а срочная адаптация б долговременная адаптация Срочная адаптация очень энергозатратна. При умеренных раздражителях тоже возникает срочная адаптация но явных признаков стресса нет. Но если раздражитель действует повторно многократно то возникает долговременная адаптация.
30854. Функциональные системы 23 KB
  Функциональные системы Функциональная система это временная динамическая саморегулирующаяся организация все составные компоненты которой взаимодействуя обеспечивают достижение полезных приспособительных результатов. В функциональной системе есть периферические и центральные составляющие: Периферические составляющие: А Исполнительные соматические вегетативные и эндокринные компоненты в том числе и поведенческие включающие механизмы формирование результата. Б Полезный приспособительный результат. В Рецепторы...
30855. Рефлекторная регуляция 34.5 KB
  Передача возбуждения в синапсе . иррадиация возникшего возбужденияраспространение возбуждения на рядом лежащие нейроны. концентрация возбуждениястягивание возбуждения на один или несколько нейронов. Индукция бывает: положительная когда наводится процесс возбуждения отрицательная когда наводится процесс торможения.
30856. Рефлексы 31 KB
  Рефлексы Рефлексы делятся на безусловные и условные. Безусловные рефлексы Это врожденные рефлексы которые не требуют предварительной выработки при действии раздражителя реализуются однотипно без особых предварительных условий. Безусловные рефлексы являются видовыми т. Рефлексы направленные на сохранение вида.
30857. Вегетативная нервная система 35.5 KB
  Очаговое представительство нервных центров СНС и ПСНС в ЦНС и. СНС боковые рога тораколюмбального отдела спинного мозга. ПСНС три зоны где лежат её центры:а мезенцефальный отдел ветви в составе глазодвигательного нерва зрачок некоторые слюнные железы;б бульбарный отдел лицевой языкоглоточный нерв и n. ВНС представлена двумя отделами: а симпатическая нервная система СНС б парасимпатическая нервная система ПСНС.
30858. Гуморальная регуляция функций 39.5 KB
  Классификация биологически активных веществ БАВ: Неспецифические метаболиты. Специфические метаболиты: а тканевые гормоны парагормоны; б истинные гормоны. Неспецифические метаболиты продукты метаболизма вырабатываемые любой клеткой в процессе жизнедеятельности и обладающие биологической активностью СО2 молочная кислота. Специфические метаболиты продукты жизнедеятельности вырабатываемые определенными специализированными видами клеток обладающие биологической активностью и специфичностью действия: а тканевые...
30859. Гуморальная регуляция функций. Межсистемный уровень 29.5 KB
  Истинные гормоны. Парагормоны. Истинные гормоны БАВ вырабатывающиеся в специализированных железах внутренней секреции обладающие дистантным действием и высокой активностью. Делятся по принадлежности к железам внутренней секреции половые гормоны тиреоидные гормоны и т.
30860. Гипоталамо-гипофизарная система 24 KB
  Меланостатин Релизинг–факторы регулируют выделение гормонов передней доли гипофиза большая часть которых гландулярные регулируют деятельность других желез внутренней секреции выделение ими гормонов. Регуляция в системе гипоталамус гипофиз осуществляется по принципу отрицательной обратной связи избыток гормонов в крови торможение их выработки: 1. Короткая петля регуляции: Рецепторы ГФ реагируют на концентрацию тропныхсобственных гормонов изменяют их выделение и опосредовано уровень гормонов периферических желез вн. Длинная...