98770

Рибосомы

Реферат

Биология и генетика

Рибосомы представляют собой белковые фабрики, работающие во всех живых клетках. Рибосомы прокариот меньше по размеру, чем рибосомы эукариотических клеток, но и те, и другие состоят из двух субъединиц, большой и малой, каждая из которых построена из нескольких молекул РНК (это так называемая рибосомальная РНК, или рРНК) и нескольких десятков различных белков.

Русский

2015-11-06

57.71 KB

0 чел.

Министерство образования Республики Беларусь

Учреждение образования «Международный государственный экологический университет имени А.Д.Сахарова»

«Рибосомы»

Выполнила студентка

Группы 92061-2

ФЭМ

Скорина Татьяна

Проверил

Морозик М.С.

Минск 2012

Содержание

1.Введение………………………………………………………………………………………………...3

Глава 1. История исследования рибосомы……………………………………………...4

Глава 2. Строение и функции, разновидности рибосом…………………………..5

Глава 3. Принципы функционирования, роль РНК……………………………………8

3.1.Генетические функции малой рибосомной субчастицы……………….……9

3.2.Энзиматические функции большой рибосомной субчастицы.…………11

Глава 4.Конформационная подвижность рибосомы………………………………13

Глава 5. «Нобелевские» рибосомы………………………………………………………….16

Глава 6. .Рибосомные белки…………………………………………………………………….20

Глава 7. Функциональные центры рибосомы…………………………………….…...22

Заключение………………………………………….…………………………………………………...24

Список использованных источников…………………………………………………….….26

Введение

Рибосомы представляют собой белковые фабрики, работающие во всех живых клетках. Рибосомы прокариот меньше по размеру, чем рибосомы эукариотических клеток, но и те, и другие состоят из двух субъединиц, большой и малой, каждая из которых построена из нескольких молекул РНК (это так называемая рибосомальная РНК, или рРНК) и нескольких десятков различных белков. Механизм работы рибосом исследуется уже не один десяток лет, но многие детали этого механизма по-прежнему не удалось выяснить, а подробные модели строения рибосом были получены лишь на рубеже XX-го и XXI веков.

Глава 1. История исследования рибосомы

Рибосомы впервые были описаны как уплотненные частицы, или гранулы, клеточным биологом румынского происхождения Джорджем Паладе в середине 1950-х годов. В 1974 г. Паладе, Клод и Кристиан Де Дюв получили Нобелевскую премию по физиологии и медицине «за открытия, касающиеся структурной и функциональной организации клетки». Термин "рибосома" был предложен Ричардом Робертсом в 1958 вместо "рибонуклеобелковая частица микросомальной фракции". Биохимические и мутационные исследования рибосомы начиная с 1960-х позволили описать многие функциональные и структурные особенности рибосомы. В начале 2000-х появились атомные структуры отдельных субъединиц, а также полной рибосомы, связанной с различными субстратами, которые позволили понять механизм декодинга (распознавания антикодона тРНК, комплементарного кодону мРНК) и детали взаимодействий между рибосомой, антибиотиками, тРНК и мРНК. [1]

Глава 2. Строение и функции, разновидности рибосом

Рибосома - крупный внутриклеточный макромолекулярный ансамбль, ответственный за синтез полипептидной цепи из аминокислот (трансляцию); состоит из молекул РНК (т. наз. рибосомные рибонуклеиновые кислоты, или рРНК) и белков.

Основная масса рибосом локализована в цитоплазме. В бактериальной клетке рибосомы составляют до 30% ее сухой массы: на одну бактериальную клетку приходится примерно 104 рибосом. В эукариотических клетках (клетки всех организмов, за исключением бактерий и синезеленых водорослей) относительное содержание рибосом меньше, и их количество очень сильно варьирует в зависимости от белок-синтезирующей активности соответствующей ткани или отдельной клетки.

В эукариотической клетке все рибосомы цитоплазмы (как мембрано-связанные, так и свободные) образуются в ядрышке; считается, что там они неактивны. Эукариотическая клетка имеет также специальные рибосомы в митохондриях (у животных и растений) и хлоропластах (у растений). Рибосомы этих органелл отличаются от цитоплазматических размерами и некоторыми функциональными свойствами. Они образуются непосредственно в этих органеллах.

Различают два основных типа рибосом. Всем прокариотическим организмам (бактерии и синезеленые водоросли) свойственны так называемые 70S рибосомы, характеризующиеся коэффициентом (константой) седиментации около 70 единиц Сведберга, или 70S (по коэф. седиментации различают и рибосомы других типов, а также субчастицы и биополимеры, входящие в состав Р.). Их молекулярная масса составляет 2,5 · 106, линейные размеры 20-25 нм. По химическому составу это рибонуклеопротеиды; они состоят только из рРНК и белка (соотношение этих компонентов 2:1). Рибосомная РНК в рибосоме присутствует в основном в виде Mg-соли (по-видимому, частично и в виде Са-соли); магния в рибосоме до 2% от сухой массы. Кроме того, в различных количествах (до 2,5%) могут присутствовать также катионы аминов-спермина, спермидина и др. [2]

Поскольку коэффициенты седиментации зависят не только от молекулярной массы, но и от формы частиц, седиментационные коэффициенты при диссоциации неаддитивны: так, например, бактериальные рибосомы с молекулярной массой ~3*106 Дальтон имеет коэффициент седиментации 70S, обозначается как 70S и диссоциирует на субъединицы 50S и 30S.

Рибосомные субчастицы содержат по одной молекуле рРНК большой длины, масса которой составляет ~1/2 - 2/3 массы рибосомной субчастицы, таким образом, в случае бактериальных рибосом 70S субчастица 50S содержит рРНК 23S (длина ~3000 нуклеотидов) и субчастица 30S содержит рРНК 16S (длина ~1500 нуклеотидов); большая рибосомная субчастица кроме «длинной» рРНК содержит также одну или две «коротких» рРНК (5S рРНК бактериальных рибосомных субчастиц 50S или 5S и 5.8S рРНК больших рибосомных субчастиц эукариот).

Цитоплазма клеток всех эукариотических организмов содержит несколько более крупные 80S рибосомы. Их молекулярная масса около 4·106, линейные размеры 25-30 нм, содержание белка в них значительно больше, чем в прокариотической рибосоме (соотношение РНК: белок ок. 1:1). Рибосомная РНК 80S также связана в основном с Mg и Са и с небольшим кол-вом полиаминов (спермин, спермидин и др.).

Хлоропласты и митохондрии эукариотических клеток содержат рибосомы, отличные от типа 80S. Рибосомы хлоропластов высших растений принадлежат к истинному 70S типу. Митохондриальные рибосомы более разнообразны; их строение находится в зависимости от таксономической принадлежности организма (т.е. от принадлежности к определенному виду, роду или семейству). Напр., митохондриальные рибосомы млекопитающих существенно мельче типичных 70S Р.; коэффициент седиментации этих рибосом составляет около 55S (т. наз. минирибосомы).

Рибосомы из самых разнообразных организмов имеют сходное строение. Они состоят из двух разделяемых субчастиц, или рибосомных субъединиц. При определенных условиях (например, при понижении концентрации Mg2+ в среде) рибосома обратимо диссоциирует на две субчастицы с соотношением их молекулярных масс около 2:1. Прокарйотическая 70S рибосома диссоциирует на субъединицы с коэффициентом седиментации 50S (молекулярная масса 1,5·106) и 30S (молекулярная масса 0,85·106). Эукариотическая рибосома разделяется на субчастицы 60S и 40S. Две рибосомные субчастицы объединены в полную рибосому строго определенным образом, предполагающим специфические контакты их поверхностей.

Как прокариотические, так и эукариотические рибосомы содержат две различные высокомолекулярные рРНК (по одной на каждую субчастицу) и одну относительно низкомолекулярную рРНК в большой субчастице. [1]

Рибосомные белки большинства животных представлены в основном умеренно основными полипептидами, хотя имеется несколько нейтральных и кислых белков. Молекулярные массы рибосомных белков варьирует от 6 тыс. до 60 тыс. г/моль. В прокариотической рибосоме малая субчастица (30S) содержит около 20, большая (50S) - около 30 различных белков; в эукариотической рибосоме 40S субчастица включает около 30 белков, а 60S-около 40 (обычно рибосомы не содержат двух или нескольких одинаковых белков). Рибосомные белки характеризуются глобулярной компактной конформацией с развитой вторичной и третичной структурой; они занимают преимущественно периферическое положение в ядре, состоящем из рРНК. Плотность упаковки рРНК в рибосомах достаточно высока.

По-видимому, рРНК определяет основные структурные и функциональные свойства рибосом, в частности обеспечивает целостность рибосомных субъединиц, обусловливает их форму и ряд структурных особенностей. Специфическая пространственная структура рРНК детерминирует локализацию всех рибосомных белков, играет ведущую роль в организации функциональных центров рибосом. [2]

Глава 3. Принципы функционирования, роль РНК

Биосинтез белка имеет два аспекта: химический и генетический. Принципиальным моментом является то, что в природе белок строится из аминокислот не посредством их прямой конденсации с освобождением воды или одновременной полимеризации на матрице, а путем последовательного добавления аминокислотных остатков к одному из концов растущей полипептидной цепи (удлинения) с одновременным сканированием матричного полинуклеотида (мРНК), задающего порядок добавления различных аминокислотных остатков. Три последовательные химические реакции приводят к включению (добавлению) аминокислоты в полипептидную цепь строящегося белка.

Разделение декодирующей и энзиматической функций между субчастицами.

Трансляция начинается с того, что мРНК, синтезируемая на ДНК в качестве копии одной из двух цепей последней, связывается с рибосомной частицей. При этом рибосомная частица (у прокариот прямо и непосредственно, а у эукариот после некоторого скольжения вдоль некодирующей части мРНК) специфически взаимодействует с началом кодирующей нуклеотидной последовательности мРНК. Этап связывания мРНК с рибосомной частицей и нескольких последующих событий, приводящих к образованию первой пептидной связи, называется инициацией трансляции. Вслед за инициацией рибосома последовательно "читает" цепочку мРНК по тройкам (триплетам) нуклеотидов по направлению к 3'-концу, наращивая (удлиняя) полипептидную цепочку аминокислотными остатками; этот этап собственно трансляции называется элонгацией. Наконец, достигнув специального нуклеотидного триплета - стоп-кодона, или кодона терминации, - рибосома освобождает синтезированную полипептидную цепочку белка: происходит терминация трансляции.

3.1.Генетические функции малой рибосомной субчастицы

Характерным моментом инициации трансляции является то, что на этом этапе участвуют не целые рибосомы, а их отдельные субчастицы. Другими словами, для того чтобы инициировать трансляцию, рибосома должна быть диссоциирована на две составляющие ее неравные субчастицы. Для этого клетка располагает специальными механизмами, обеспечивающими диссоциацию рибосом после терминации трансляции. Именно малая субчастица рибосомы (30S у прокариот и 40S у эукариот), и только она, связывается с мРНК, то есть служит первичным приемником генетической информации для белоксинтезирующего аппарата. Лишь впоследствии, при завершении этапа инициации трансляции, к ней присоединяется большая субчастица (50S у прокариот и 60S у эукариот), образуя полную рибосомную частицу (70S у прокариот и 80S у эукариот), которая и будет производить элонгацию.

В процессе элонгации рибосома удерживает мРНК и движется относительно ее (или протягивает ее сквозь себя) в направлении от 5'-конца к 3'-концу. Удержание мРНК на рибосоме есть целиком и полностью функция малой рибосомной субчастицы, в то время как большая субчастица с мРНК никак не взаимодействует. Соответственно последовательное сканирование кодирующей последовательности мРНК (считывание генетической информации) в ходе элонгации осуществляется на малой субчастице транслирующей рибосомы.[1]

Механизм потриплетного сканирования мРНК в ходе элонгации предполагает участие молекул тРНК, которые взаимодействуют прежде всего с малой рибосомной субчастицей. Малая субчастица в составе полной транслирующей рибосомы имеет два тРНК-связывающих участка, обозначаемых как аминоацил-тРНК-связывающий участок (А-участок) и пептидил-тРНК-связывающий участок (Р-участок). На этапе элонгации Р-участок всегда занят остатком тРНК.

Рассмотрение элементарного акта элонгации удобно начать с момента, когда Р-участок занят молекулой пептидил-тРНК (тРНК, несущая растущую полипептидную цепь), а А-участок вакантен и содержит лишь некий нуклеотидный триплет (кодон) мРНК, пока не взаимодействующий ни с каким триплетом (антикодоном) тРНК . Такая рибосома готова (компетентна) связать аминоацил-тРНК, антикодон которой комплементарен триплету (кодону), установленному в А-участке. При наличии около рибосомы такой аминоацил-тРНК происходит первый шаг элементарного элонгационного цикла - кодонспецифическое связывание аминоацил-тРНК с А-участком. Теперь рибосома несет "старую" пептидил-тРНК в Р-участке и новоявленную аминоацил-тРНК в А-участке, которые расположены рядом, бок о бок. Следовательно, в результате кодон-антикодонового взаимодействия мРНК с тРНК на малой субчастице рибосомы произошло декодирование триплета мРНК: именно тот аминокислотный остаток, который был привешен к тРНК с комплементарным антикодоном, оказался в рибосоме. [2]

Далее молекулы пептидил-тРНК и аминоацил-тРНК, расположенные рядом в рибосоме, реагируют друг с другом: пептидильный остаток переносится на аминогруппу молекулы аминоацил-тРНК. Это второй шаг элементарного элонгационного цикла - транспептидация, когда полипептидная цепь удлиняется на одну аминокислоту - на ту, которую принесла тРНК, связавшаяся с А-участком. А сама тРНК, принесшая эту аминокислоту, так и осталась с ней связанной и, таким образом, связанной с удлиненным полипептидом (рис. 1, состояние III). В этом состоянии, однако, новообразованная пептидил-тРНК - точнее, ее остаток тРНК - занимает "не положенный ей" А-участок, а "сидит" в Р-участке деацилированная (без пептидильного или аминоацильного остатков) тРНК. Такое состояние называется претранслокационным. Дальше элонгация идти не может, пока не осуществится третий шаг элонгационного цикла - транслокация, которая выбросит деацилированную тРНК из Р-участка и переведет пептидил-тРНК из А-участка в Р-участок вместе со связанным с ней кодоном мРНК. В результате в освободившемся А-участке на малой рибосомной субчастице установится следующий (новый) кодон мРНК.

Цикл завершился, приведя к образованию одной пептидной связи и соответствующему удлинению растущего полипептида на одну аминокислоту, с одной стороны, и к прочтению одного кодона мРНК и перемещению мРНК на один триплет - с другой. Повторение таких элементарных циклов и создает процесс элонгации.

Таким образом, малая рибосомная субчастица в изолированном состоянии воспринимает копию гена в форме мРНК и инициирует процесс ее трансляции, а в ходе трансляции малая субчастица полной рибосомы удерживает мРНК на себе, декодирует ее с помощью тРНК и последовательно перебирает ее кодоны и тРНК, используя механизм транслокации. Так как все это операции с генетическим материалом, то указанные функции малой рибосомной субчастицы могут быть определены как генетические.

3.2.Энзиматические функции большой рибосомной субчастицы

Когда пептидил-тРНК занимает Р-участок, а аминоацил-тРНК - А-участок на малой субчастице рибосомы, концы остатков тРНК с присоединенными к ним аминоацильными остатками взаимодействуют с большой субчастицей рибосомы. Участок этого взаимодействия на большой субчастице является пептидилтрансферазным центром рибосомы: он катализирует реакцию транспептидации между пептидил-тРНК и аминоацил-тРНК, то есть перенос карбоксильной группы пептидильного остатка на аминогруппу аминоацил-тРНК. В результате образуется новая пептидная связь, и пептидильный остаток становится на одну аминокислоту длиннее. Таким образом, большая субчастица транслирующей рибосомы выступает здесь как фермент, ответственный за образование пептидных связей и в целом за синтез (элонгацию) полипептидной цепи. Это главная энзиматическая функция рибосомы.

Следует отметить, что никакого отдельного от рибосомы белка-фермента, катализирующего образование пептидных связей на рибосоме, не существует. Не найдено и никакого специального белка в составе рибосомы, который бы обладал такой энзиматической функцией. Транспептидация катализируется пептидилтрансферазным центром самой рибосомы как интегральной частью большой рибосомной субчастицы, и основной вклад в организацию центра вносит, по-видимому, рибосомная РНК субчастицы.

Кроме катализа реакции транспептидации большая рибосомная субчастица определенным образом участвует в энзиматическом расщеплении (гидролизе) гаунозинтрифосфата (ГТФ) в процессе трансляции. Дело в том, что, как видно на рис. 1, первый и третий шаги элонгационного цикла идут с участием специальных нерибосомных белков - так называемых факторов элонгации EF1 и EF2. Эти белки являются катализаторами соответствующих нековалентных переходов - связывания аминоацил-тРНК и транслокации. Для такого катализа необходимым оказывается сопряженный гидролиз ГТФ. Именно большая рибосомная субчастица взаимодействует с факторами элонгации и индуцирует гидролиз ГТФ на них. Хотя сам ГТФазный центр находится не на рибосомной субчастице, а на белке - факторе элогнации, ее временная ассоциация с фактором существенна для формирования активного энзиматического ГТФазного центра. [2]

Таким образом, существует четкое разделение труда между двумя неравными субчастицами рибосомы: малая субчастица выполняет генетические функции, будучи ответственной за прием и декодирование генетической информации, в то время как большая участвует в энзиматических реакциях в процессе трансляции.

Глава 4.Конформационная подвижность рибосомы

Работа рибосомы в качестве "лентопротяжного механизма" последовательное прочитывание цепи мРНК от одного конца к другому) в ходе элонгации и ее способность перебрасывать сравнительно большие молекулярные массы (молекулы тРНК) из одного участка в другой в каждом элементарном элонгационном цикле предполагают ее механическую подвижность. Взаимная подвижность двух рибосомных субчастиц может быть основным видом крупноблочной подвижности рибосомы в ходе работы, и имеются экспериментальные свидетельства в пользу такой подвижности. Кроме того, существуют указания на подвижность "головки" малой рибосомной субчастицы относительно ее "тела" и на подвижность палочкообразного бокового выступа большой рибосомной субчастицы.

Рибосома при прохождении элонгационного цикла осциллирует между двумя конформационными состояниями: закрытым (сомкнутым) и открытым (разомкнутым). В сомкнутом состоянии рибосомные лиганды (тРНК) зажаты между субчастицами, связаны максимальным количеством контактов с рибосомой и не имеют внутририбосомной подвижности. В разомкнутом состоянии рибосомы лиганды более подвижны, контакты с рибосомой менее полны, и имеется возможность их входа и выхода из рибосомы. Так, на первом этапе связывания аминоацил-тРНК рибосома должна быть открыта для приема лиганда. Возможно, это открытое состояние фиксируется фактором элонгации EF1. Далее EF1 уходит, рибосомные субчастицы плотно смыкаются, и аминоацильный конец связавшейся аминоацил-тРНК вступает в контакт с пептидилтрансферазным центром большой субчастицы. В сомкнутом состоянии пептидил-тРНК и аминоацил-тРНК тесно сближены, и между ними происходит реакция транспептидации. Теперь, чтобы выбросить деацилированную тРНК из рибосомы и дать свободу для перемещения остатка тРНК молекулы пептидил-тРНК из А-участка в Р-участок, рибосому надо приоткрыть, в частности путем раздвигания субчастиц. Это может осуществляться фактором элонгации EF2. После ухода EF2 с рибосомы она снова смыкается и ждет прихода очередной аминоацил-тРНК с фактором элонгации EF1.

Процесс периодического смыкания-размыкания рибосомы является энергозависимым: факторы элонгации EF1 и EF2 взаимодействуют с рибосомой только будучи связанными с ГТФ (согласно модели, при этом взаимодействии происходит открывание рибосомы), а взаимодействие с рибосомой наводит ГТФазную активность, ГТФ гидролизуется, фактор элогации теряет сродство к рибосоме и уходит, и рибосома закрывается. Таким образом, на каждое смыкание-размыкание рибосомы расходуется одна молекула ГТФ. Так как в каждом элонгационном цикле рибосома смыкается-размыкается дважды, то две молекулы ГТФ расходуются на каждый цикл. Это есть энергетическая плата за эффективное (быстрое и надежное) функционирование рибосомы как молекулярной машины. [2]

Рибосома - сложная белоксинтезирующая частица, обладающая одновременно генетической (декодирующее устройство), энзиматической (рибосома как фермент пептидилтрансфераза) и механической (молекулярная машина) функциями, разделенными между субчастицами.

За инициацией трансляции рибосома последовательно "читает" цепочку мРНК по тройкам (триплетам) нуклеотидов по направлению к 3'-концу, наращивая (удлиняя) полипептидную цепочку аминокислотными остатками; что называется элонгацией, и освобождает ее при терминации.

Цикл трансляции, включающий инициацию, элонгацию и терминацию, для первой, инициации трансляции, требует диссоциации составляющих рибосому субчастиц - после терминации трансляции. Только малая субчастица рибосомы (30S у прокариот и 40S у эукариот) связывается с мРНК, служит первичным приемником и сканером генинформации. Большая субчастица (50S у прокариот и 60S у эукариот), образуя полную рибосомную частицу (70S у прокариот и 80S у эукариот), производит элонгацию.

Малая субчастица в полной рибосоме имеет два тРНК-связывающих участка, обозначаемых как аминоацил-тРНК-связывающий участок (А-участок) и пептидил-тРНК-связывающий участок (Р-участок), удерживает мРНК, декодирует ее с помощью тРНК - перебирая ее кодоны и тРНК путем транслокации.

 Энзиматические функции – у большой рибосомной субчастицы, пептидилтрансфераз, катализирует реакцию транспептидации между пептидил-тРНК и аминоацил-тРНК, то есть перенос карбоксильной группы пептидильного остатка на аминогруппу аминоацил-тРНК, образуя новую пептидная связь (причем рибозим - рибосомная РНК субчастицы) и расщепляя (гидролиз ГТФ) гаунозинтрифосфат, с участием специальных нерибосомных белков - так называемых факторов элонгации EF1 и EF2 - катализаторов нековалентных - связывания аминоацил-тРНК и транслокации, с гидролизом ГТФ.

Свободная энергия гидролиза сложноэфирной связи АК и рибозы тРНК - 7, а пептидной связи - 0,5 ккал/моль, но гидролиз ГТФ очень сильно (на несколько порядков) увеличивает скорость элонгации, кинетически, подобно актину в миоАТФазе. Очевидно, белок-катализатор (EF1 или EF2) тоже имеет сродство к переходному конформационному состоянию рибосомы и фиксирует его, а выход в следующее (продуктивное) состояние требует ГТФ.

 ГТФ-связывающие белки (Г-белки) – предмет НП Б 94 «за открытие G-белков и их роли в сигнальной трансдукции в клетке» (Гилман, Родбел, см.71 - Сазерленд). Смысл, что для сигнала - регуляции концентрация должна быстро изменяться, в разы за секунды, и Г-белок – ГТФаза с самоинактивацией путем гидролиза ГТФ. Рецептор может активировать многие молекулы Г-белка, другие адапторы и не только Ац.

 Фактор элонгации может взаимодействовать с рибосомой только после ассоциации с ГТФ, изменяющей его конформацию – ее переходное состояние рибосомы, индуцируя и ГТФазную активность фактора, уход (т.о. энергия сродства фактора элонгации к переходному конформационному состоянию компенсируется.

Глава 5. «Нобелевские» рибосомы

Методы рентгеноструктурного анализа позволяют судить о строении биологических макромолекул и их комплексов (в частности, эти методы помогли установить в 1953 году структуру ДНК). В основе рентгеноструктурного анализа лежит получение кристаллов макромолекул и просвечивание их рентгеновскими лучами. По характеру дифракции рентгеновских лучей, проходящих через эти кристаллы, можно судить о строении образующих кристаллы молекул. Однако к началу восьмидесятых годов XX века никому еще не удавалось получить пригодные для анализа кристаллы ни полных рибосом, ни их отдельных субъединиц.[3]

Первые успешные попытки кристаллизовать рибосомы для исследования их строения с помощью рентгеновских лучей были предприняты в восьмидесятые годы Адой Йонат в Берлине и, независимо от нее, группой из Института белка в Пущино, в состав которой вошли Марат и Гульнара Юсуповы, впоследствии продолжившие исследования рибосом на Западе. Но серьезный прорыв в этом направлении был сделан лишь в начале девяностых, когда группа Ады Йонат продемонстрировала возможность получения кристаллов большой субъединицы прокариотической рибосомы, дающих дифракционную картину с разрешением, которое позволяет определять положение отдельных атомов (до 3 ? и меньше; при этом размер рибосомы составляет около 200 ?). Но первые правдоподобные модели структуры рибосом удалось получить только после того, как технологию кристаллизации и методику анализа рентгеноструктурных данных усовершенствовали в ходе совместных исследований группы Питера Мура (Peter Moore) и Томаса Стайца в Йельском университете. В 2000 году в журнале Science была опубликована совместная статья этих групп, в которой была впервые подробно (с атомарным разрешением) описана структура большой субъединицы бактериальной рибосомы.

Тем временем группа Венки Рамакришнана, работавшая в Лаборатории молекулярной биологии в Кембридже, получила столь же подробную модель малой субъединицы рибосомы другого вида бактерий, и в том же году статья об этом была опубликована в Nature. Почти одновременно вышла статья Ады Йонат и ее сотрудников, добившихся с малой субъединицей бактериальной рибосомы почти такого же результата, хотя и допустивших, как впоследствии выяснилось, ряд ошибок в интерпретации ее структуры.[5]

Модель структуры целой рибосомы (то есть комплекса большой и малой субъединиц и молекул транспортной РНК, или тРНК, доставляющих аминокислоты к рибосоме) с менее детальным разрешением , была впервые получена в 1999 году в лаборатории Гарри Ноллера (Harry F. Noller) из Калифорнийского университета в Санта-Крус при участии Марата и Гульнары Юсуповых, в то время уже работавших у Ноллера.

Ноллер руководил группой, подготовившей первую модель структуры целой рибосомы, и много сделал для понимания устройства рибосом и механизма синтеза белка, но не вошел в число лауреатов Нобелевской премии, присужденной за исследования строения и работы рибосом.

За публикацией 1999 года последовала еще одна, в 2001 году, в которой структура целой рибосомы была описана с разрешением 5,5 ?, то есть близким к атомарному. В дальнейшем нескольким лабораториям, в том числе и лаборатории Ноллера, удалось получить модели структуры целой рибосомы и с атомарным разрешением. Первую такую модель (с разрешением 3,5 ?) представила группа, которой руководил Джейми Кейт (Jamie H.D. Cate) из Калифорнийского университета в Беркли.

Около двух третей массы рибосомы составляет РНК, а около трети – белки. Исследования строения и работы рибосом показали, что функциональную нагрузку в рибосомах несет, прежде всего, РНК. Таким образом, рибосомы представляют собой, по сути, гигантские рибозимы. Это открытие говорит в пользу гипотезы, согласно которой на первых этапах существования жизни она представляла собой «мир РНК»: молекулы РНК обеспечивали и хранение наследственной информации, и управление химическими процессами, необходимыми для считывания и воспроизведения этой информации; впоследствии эти функции в ходе эволюции были переданы соответственно ДНК и белкам.

Представления о структуре рибосом находят и непосредственное практическое применение. Многие антибиотики, используемые для лечения инфекционных заболеваний, действуют за счет подавления работы бактериальных рибосом. В лабораториях Йонат, Рамакришнана и Стайца были получены данные о механизме действия ряда таких антибиотиков. Эти данные уже сегодня используются для разработки новых и совершенствования существующих антибиотиков. Задача эта весьма актуальна, поскольку болезнетворные бактерии непрерывно эволюционируют, вырабатывая устойчивость к используемым в медицинской практике средствам, и фармацевтике нельзя отставать от бактерий в этой непрерывной «гонке вооружений».

Матрица ДНК (DNA) синтезируется информационная РНК (RNA), к которой впоследствии присоединяются две субъединицы рибосомы (ribosome) и начинается синтез белка (protein). [4]

Каждую аминокислоту (amino acid), входящую в состав белковой цепочки, к рибосоме доставляет транспортная РНК .

Некоторые антибиотики способны связываться с рибосомами бактерий, останавливая синтез белка и приводя к гибели бактериальных клеток.

Каждая Нобелевская премия может быть разделена не более чем на троих, и выбор этих троих из числа достойных претендентов бывает небесспорным и почти всегда оставляет в тени ученых, чей вклад в отмеченное премией открытие тоже заслуживает признания. Так случилось и в этот раз. К тем выдающимся исследователям строения рибосом, кто не попадет в число награжденных этой премией, относятся Питер Мур, Джейми Кейт и Марат Юсупов. Но особенно несправедливо отсутствие в числе лауреатов Гарри Ноллера, который первым показал ключевую роль РНК в работе рибосом, первым прочитал последовательность нуклеотидов рибосомальной РНК и выяснил ее вторичную структуру (то есть как она свернута), закартировал места связывания большинства лигандов рибосомы, первым установил структуру целой рибосомы в комплексе с молекулами тРНК – и при этом оказался четвертым лишним.[6]

Хотя сделанный Нобелевским комитетом выбор трех лауреатов и можно считать спорным, само научное достижение, за которое их наградят, вполне достойно Нобелевской премии по химии. В ходе исследований строения рибосом были усовершенствованы методы рентгеноструктурного анализа, что позволило описывать с атомарным разрешением взаимодействие рибосомы с белками, управляющими ее работой, и с молекулами тРНК, а также изменения, происходящие в структуре рибосомы в процессе синтеза белка. На сегодняшний день рибосомы – самые большие несимметричные макромолекулярные комплексы с установленной структурой (строение вирусов изучать легче в связи с их симметричностью). Можно ожидать, что в дальнейшем рентгеноструктурный анализ будет успешно применен и для исследования строения и работы других крупных макромолекулярных комплексов, например сплайсосом, вырезающих из предшественников информационной РНК некодирующие последовательности (интроны).

Глава 6.Рибосомные белки

Каждая рибосомная субчастица содержит много молекул рибосомных белков, и все они разные. В этом отношении рибосомный рибонуклеопротеид принципиально отличается от вирусного, где белковая оболочка строится из однотипных белков за счет их симметричной слоевой упаковки на поверхности РНК. Самосборка четвертичной структуры - физический механизм реализации симметричной упаковки идентичных белковых молекул в слое, характерной для вирусных нуклеопротеидов. Однако такая белковая самосборка невозможна в случае разнородных белковых молекул, каковыми являются рибосомные белки. Здесь реализуется другой принцип: каждый рибосомный белок имеет свою персональную посадочную площадку на рибосомной РНК - свой "шесток". Белок специфически узнает только этот участок РНК и садится на него. Так, на рибосомной РНК рассаживаются все разнотипные рибосомные белки. На 23S РНК бактериальной рибосомы за счет такого специфического РНК-белкового узнавания рассаживаются 32 различные белковые молекулы, а на 16S РНК - 21 белок.

Рибосомная РНК формирует ядро рибосомной субчастицы, а белки в среднем тяготеют к периферии. Однако на периферии оказывается и много участков РНК. В отличие от вирусных нуклеопротеидов белок рибосом не образует оболочки вокруг РНК. Во-первых, в рибосомах белка по массе относительно много меньше, чем в вирусах, и его просто не может хватить, чтобы покрыть всю рибосомную РНК; рибосомная РНК может быть лишь "полуодета". Во-вторых, рибосомные белки, скорее всего, не формируют поверхностных слоев, а организованы в группы - трехмерные кластеры, где часть белков оказывается под другими белками и не экспонирована на поверхности. В-третьих, периферические структурные образования рибосомной РНК могут быть участниками этих кластеров наравне с белками и в некоторых случаях прикрывать белки с поверхности.

Многочисленные рибосомные белки могут играть двоякую роль в современной рибосоме. С одной стороны, они могут непосредственно участвовать в функциях связывания субстратов и каталитических функциях рибосомы, локализуясь в соответствующих функциональных центрах и обеспечивая их своими активными группами. С другой - рибосомные белки могут служить стабилизаторами или модификаторами определенных локальных структур рибосомной РНК и таким образом поддерживать их в функционально активном состоянии или способствовать их переключениям из одного состояния в другое. В частности, в отношении главной каталитической функции рибосомы - ее пептидил-трансферазной активности, ответственной за образование пептидных связей, имеются все основания полагать, что эта активность обеспечивается локальной структурой рибосомной РНК большой субчастицы, но некоторые рибосомные белки оказываются необходимыми для поддержания (стабилизации) этой структуры.

Глава 7.Функциональные центры рибосомы

Основная морфологическая черта электронно-микроскопических изображений рибосомы - борозда, разделяющая две рибосомные субчастицы .

Эта борозда сильно расширяется в одном месте: виден так называемый "глаз" рибосомы. Указанная особенность отражает реальный факт существования значительной полости между двумя рибосомными субчастицами. Как показано самыми последними электронно-микроскопическими исследованиями с высоким разрешением, именно в этой полости размещаются основные субстраты рибосомы - молекулы пептидил-тРНК и аминоацил-тРНК, участвующие в образовании полипептидной цепи .Это тРНК-связывающий центр рибосомы.

Теперь рассмотрим отдельно малую рибосомную субчастицу. Она разделяется глубокой бороздой на головку и тело. Эта глубокая борозда - шея - есть место, в котором размещается участок связывания мРНК и через которое цепь мРНК протягивается от одного конца к другому в процессе трансляции.

У большой рибосомной субчастицы тоже есть головка - это центральный выступ, среди трех видимых выступов данной субчастицы. В шее (борозде, отделяющей головку от тела) размещается главный каталитический центр рибосомы - пептидил-трансферазный центр, осуществляющий синтез пептидных связей.

Так как каждая тРНК в рибосоме одним своим концом - антикодоном - должна взаимодействовать с кодоном мРНК, а другим, акцепторным концом, несущим аминокислоту или пептид, - с пептидил-трансферазным центром, то ее положение в рибосоме в отношении двух рибосомных субчастиц определяется однозначно: антикодон тРНК сидит в шее малой субчастицы, а акцепторный конец - в шее большой субчастицы.

Наконец, важные характерные черты рибосомы - подвижный палочкообразный боковой выступ большой субчастицы, непокрытая малой субчастицей площадка большой субчастицы у основания выступа. Наблюдения и эксперименты позволяют предполагать следующую картину событий: площадка принимает на себя поступающую в рибосому новую аминоацил-тРНК в комплексе со специальным белком - фактором элонгации 1 (EF1). При этом палочкообразный отросток взаимодействует с фактором и ориентируется более или менее перпендикулярно плоскости раздела между субчастицами. В результате образуется карман между непокрытой площадкой большой субчастицы, боковой поверхностью малой субчастицы и палочкообразным отростком. Этот же карман может принимать другой белок - фактор элонгации 2 (EF2), связывающийся с рибосомой для производства механического акта - транслокации. Третий - выступ большой субчастицы и примыкающая к нему лопасть (боковое "ребро"), по-видимому, непосредственно участвуют в ассоциации рибосомных субчастиц. Со стороны малой рибосомной субчастицы в ассоциации субчастиц участвует боковая лопасть ее "тела".

Заключение

Рибосомы, внутриклеточные частицы, осуществляющие биосинтез белка; Р. обнаружены в клетках всех без исключения живых организмов: бактерий, растений и животных; каждая клетка содержит тысячи или десятки тысяч. Различают 2 главных класса Р.: так называемые 70 SP (молекулярная масса около 3×106, диаметром около 200—300  , коэффициент седиментации S°20w около 70 единиц Сведберга) и более крупные 80 S P. (молекулярная масса около 4—5×106, максимальный размер до 400  , коэффициент седиментации около 80 единиц Сведберга). Р. 70 S класса характерны для клеток, не имеющих оформленного ядра, — прокариотов (бактерии, актиномицеты и синезелёные водоросли), а также для хлоропластов и митохондрий высших организмов.По химической природе Р. — нуклеопротеид, состоящий из рибонуклеиновой кислоты (РНК) и белка. Р. класса 70 S содержит 60—65% РНК и 40—35% белка, а Р. класса 80 S — около 50% РНК и 50% белка. Универсальный принцип структурной организации Р. — построение её из двух неравных субчастиц (субъединиц), на которые она может диссоциировать (например, при понижении концентрации ионов Mg2+ в среде) и вновь реассоциировать по схеме:

70 S Û 50 S + 30 S; 80 S Û 60 S + 40 S

Большая субчастица (50 S или 60 S) состоит из молекулы высокополимерной рибосомальной РНК (молекулярная масса 1,1—1,8×106), молекулы относительно низкополимерной рибосомальной РНК (молекулярная масса 40 000) и нескольких десятков молекул белков. Малая субчастица (30 S или 40 S) состоит из молекулы высокополимерной рибосомальной РНК (молекулярная масса 0,6—0,7×106) и от 20 (в 30 S частицах) до 40 (в 40 S частицах) различных молекул белков. Высокополимерная рибосомальная РНК создаёт возможность сборки этих белков в единую рибонуклеопротеидную частицу. В процессе функционирования (т. е. синтеза белка) Р. осуществляет несколько функций: 1) специфическое связывание и удержание компонентов белоксинтезирующей системы [информационная, или матричная, РНК (иРНК): аминоацил-тРНК; пептидил-тРНК; гуанозинтрифосфат (ГТФ); белковые факторы трансляции EF — Т и EF — G]: 2) каталитические функции (образование пептидной связи, гидролиз ГТФ): 3) функции механического перемещения субстратов (иРНК, тРНК), или транслокации. Малая рибосомная субчастица содержит участки для связывания иРНК и аминоацил-тРНК и, по-видимому, не несёт каталитических функций. Большая субчастица содержит каталитический участок для синтеза пептидной связи, а также центр, участвующий в гидролизе ГТФ: кроме того, в процессе биосинтеза белка она удерживает на себе растущую цепь белка в виде пептидил-тРНК. Каждая из субъединиц может проявить связанные с ней функции отдельно, без связи с другой субчастицей.

Таким образом, существует четкое разделение труда между двумя неравными субчастицами рибосомы: малая субчастица выполняет генетические функции, будучи ответственной за прием и декодирование генетической информации, в то время как большая участвует в энзиматических реакциях в процессе трансляции.

Список использованных источников:

  1.  Спирин А.С. Принципы структуры рибосом // Соросовский Образовательный Журнал. 1998. N 11. С. 65-70.
  2.  http://www.referat.ru/referats/view/28587

3.  Richard Van Noorden. Ribosome clinches the chemistry Nobel // Nature News. Published online 7 October 2009.

4.  Robert F. Service. 2009 Chemistry Nobel honors work on ribosomes // ScienceNOW Daily News. Published online 7 October 2009.

5.  The Nobel Prize in Chemistry 2009 (сообщение на сайте Нобелевского комитета).

6.http://n-mir.org/index.php?option=com_content&task=view&id=330&Itemid=2


 

А также другие работы, которые могут Вас заинтересовать

58184. Принципы классификации языков 63 KB
  Языки различаются степенью распространенности, количеством носителей (на одних говорят сотни этносов, на других миллионы. Половина населения земного шара говорит всего на 12 языках...
58187. Липиды. Состав и строение белков 714 KB
  Последовательность аминокислот в составе полипептидной цепи представляет первичную структуру белка. Она уникальна для любого белка и определяет его форму свойства и функции. Эта спираль вторичная структура белка.
58190. Правовая основа бухгалтерского учета в РФ. Понятие организации бухгалтерского учета в РФ 166 KB
  Правовая основа бухгалтерского учета в РФ. Понятие организации бухгалтерского учета в РФ. Документы регламентирующие организацию бухгалтерского учета. Международные стандарты учета и адаптация к ним российской системы учета.
58191. Предложение. Три аспекта предложения 33 KB
  Современное языкознание располагает большим количеством лингвистических теорий, изучающих предложение. Сейчас особенно интенсивным стало изучение текста. Но предложение было и остается основной единицей синтаксиса, так как именно в предложении находят выражение наиболее существенные функции языка: коммуникативная