98857

Строение и функции митохондрий

Реферат

Биология и генетика

Число митохондрий в клетке очень непостоянно; оно зависит от вида организма и от природы клетки. В клетках, в которых потребность в энергии велика, содержится много митохондрий (водной печеночной клетке, например, их может быть около 1000). В менее активных клетках митохондрий гораздо меньше. Чрезвычайно сильно варьируют также размеры и форма митохондрий. Митохондрии могут быть спиральными, округлыми, вытянутыми

Русский

2016-07-13

278.62 KB

0 чел.

Министерство образования Республики Беларусь

Учреждение образования

Международный государственный экологический университет

имени А.Д. Сахарова

Тема реферата:

строение и функции

митохондрий

Подготовила:

Студентка 4 курса

МБД, гр. 92062

Ветчинкина Е.В.

Минск, 2012

Содержание

Введение   3

  1.  Строение митохондрий   4
  2.  Митохондриальная ДНК   5
  3.  Наружная и внутренняя митохондриальные мембраны   6
  4.  Метаболические функции   9
  5.  Транспортные системы   9
  6.  Механизм транспорта митохондриальных белков   11
    1.  Митохондриальные шапероны   12
    2.  Укладка полипептидной цепи: шапероны hsp60 и hsp70   12
    3.  Как работают шапероны   12
  7.  Транспорт жирных кислот   13
  8.  Малатный челнок   13
  9.  Функции митохондрий и энергообразование   14

Заключение   18

Список литературы   19


Введение

Митохондрии имеются во всех эукариотических клетках. Эти органеллы — главное место аэробной дыхательной активности клетки. Впервые митохондрии были обнаружены в виде гранул в мышечных клетках в 1850 г.

Число митохондрий в клетке очень непостоянно; оно зависит от вида организма и от природы клетки. В клетках, в которых потребность в энергии велика, содержится много митохондрий (водной печеночной клетке, например, их может быть около 1000). В менее активных клетках митохондрий гораздо меньше. Чрезвычайно сильно варьируют также размеры и форма митохондрий. Митохондрии могут быть спиральными, округлыми, вытянутыми, чашевидными и даже разветвленными: в более активных клетках они обычно крупнее. Длина митохондрий колеблется в пределах 1,5-10 мкм, а ширина — в пределах 0,25-1,00 мкм, но их диаметр не превышает 1 мкм.

Митохондрии способны изменять свою форму, а некоторые могут также перемещаться в особо активные участки клетки. Такое перемещение позволяет клетке сосредоточить большое число митохондрий в тех местах, где выше потребность в АТФ. В других случаях положение митохондрий более постоянно (как, например, в летательных мышцах насекомых).


  1.  Строение митохондрий

Митохо́ндрия (от греч. μίτος — нить и χόνδρος — зёрнышко, крупинка) — двумембранная гранулярная или нитевидная органелла толщиной около 0,5 мкм. Характерна для большинства эукариотических клеток как автотрофов (фото-синтезирующие растения),так и гетеротрофов (грибыживотные).

Количество митохондрий в клетках различных организмов существенно отличается: так, одноклеточные зелёные водоросли (эвгленахлорелла,  полито-мелла) и трипаносомы имеют лишь одну гигантскую митохондрию, тогда как ооцит и амёба Chaos chaos содержат 300 000 и 500 000 митохондрий соответственно; у кишечных анаэробных энтамёб и некоторых других паразитических простейших митохондрии отсутствуют.

Они выполняют функцию метаболического центра клетки. Митохондрии являются местом синтеза аденозинтрифосфата (АТФ). Это процесс требует участия многих ферментов, большинство из  которых поступает из цитозоля.

Процесс импорта ферментов очень сложен и включает несколько этапов, описанных ниже.  Предполагается, что  митохондрии – результат эволюции организмов, которые внедрились в примитивную прокаритическую клетку и сформировали симбиотческие отношения с хозяином.

Таблица 1. Основные принципы устройства и работы митохондрий

Признаки

Значения

Происхождение

Считается, что митохондрии произошли в результате эволюции от организмов, которые внедрились в примитивную прокариотическую клетку и стали симбиотами с ней.

Форма

Эти органеллы могут принимать различные морфологические формы. Некоторые из них имеют сферическую форму, другие лентовидную.

Митохондриальная ДНК

Митохондриальная ДНК реплицируется в интерфазе, и этот процесс не синхронизиован с репликацией ДНК в ядре. Митохондриальная ДНК отличается от ядерной ДНК и кодирует особые митохондриальные гены.

Синтез белка

Количество транслируемых с митохондриальной м РНК белков ограничено; они формируют субъединицы крупных ферментных комплексов. Митохондрии имеют функционирующие рибосомы, переводящие информацию митохондриальной ДНК в белки, используемые в органелле.

Клеточное деление

Во время клеточного цикла митохондрии один раз делятся надвое, образуя при этом перетяжку. Перетяжка деления развивается, начиная с внутренней митохондриальной мембраны.  

Рис. 1 строение митохондрии

  1.  Митохондриальная ДНК

В отличие от других органелл клетки, митохондрии обладают собственной ДНК. Которая отличается от ядерной ДНК и кодирует особые митохондриальные гены. Свойства митохондриальной ДНК:

  1.  Небольшая и содержит около 16,5 кб, то есть приблизительно в 105 разменьше, чем ДНК локализованная  в ядре;
  2.  Кольцевая и кодирует 2 рибосомные РНК, 22 транспортных РНК (тРНК) и 13 белков.

Находящаяся в матриксе митохондриальная ДНК представляет собой замкнутую кольцевую двуспиральную молекулу, в клетках человека имеющую размер 16569 нуклеотидных пар, что приблизительно в 105 раз меньше ДНК, локализованной в ядре. В частности, под контролем митохондриального генома кодируются семь субъединиц АТФ-синтетазы, три субъединицы цитохромоксидазы и одна субъединица убихинол-цитохром-с-редуктазы. При этом все белки, кроме одного, две рибосомные и шесть тРНК транскрибируются с более тяжёлой (наружной) цепи ДНК, а 14 других тРНК и один белок транскрибируются с более лёгкой (внутренней) цепи.

Митохондриальная ДНК реплицируется в интерфазе, что частично синхронизировано с репликацией ДНК в ядре. Во время же клеточного цикла митохондрии делятся надвое путём перетяжки, образование которой начинается с кольцевой бороздки на внутренней митохондриальной мембране. Детальное изучение нуклеотидной последовательности митохондриального генома позволило установить то, что в митохондриях животных и грибов нередки отклонения от универсального генетического кода. Так, в митохондриях человека кодон ТАТ вместо изолейцина в стандартном коде кодирует аминокислоту  метионин, кодоны ТСТ и ТСС, обычно кодирующие аргинин, являются стоп-кодонами, а кодон АСТ, в стандартном коде являющийся стоп-кодоном, кодирует аминокислоту метионин. Что касается митохондрий растений, то, по-видимому, они используют универсальный генетический код. Другой чертой митохондрий является особенность узнавания кодонов тРНК, заключающаяся в том, что одна подобная молекула способна узнавать не один, но сразу три или четыре кодона. Указанная особенность снижает значимость третьего нуклеотида в кодоне и приводит к тому, что митохондрии требуется меньшее разнообразие типов тРНК. При этом достаточным количеством оказываются всего 22 различных тРНК.

Имея собственный генетический аппарат, митохондрия обладает и собственной белоксинтезирующей системой, особенностью которой в клетках животных и грибов являются очень маленькие рибосомы, характеризуемые коэффициентом седиментации 55S, что даже ниже аналогичного показателя у 70s-рибосом прокариотического типа. При этом две большие рибосомные РНК также имеют меньшие размеры, чем у прокариот, а малая рРНК вообще отсутствует. В митохондриях растений, напротив, рибосомы более сходны с прокариотическими по размерам и строению.

  1.  Наружная и внутренняя митохондриальные мембраны

Митохондрия, окруженная двойной мембраной, имеет две полости и четыре мембранные поверхности. Наружная мембрана содержит значительное  количество белка, порина. Этот белок формирует поры с диаметром, позволяющим молекулам размером до 5000 дальтон свободно проходит в первую полость. Таким образом, ионы, аминокислоты, сахара и другие цитозольные компоненты беспрепятственно проходят в первое, межмембранное пространство. Его толщина — 10-20 нм. Группа ферментов, локализованная в этом пространстве, фосфорилирует нуклеотиды и сахара нуклеотидов.

Различный типы клеток отличаются друг от друга как по количеству и форме митохондрий, так и по количеству крист. Особенно много крист имеют митохондрии в тканях с активными окислительными процессами, например в сердечной мышце. Вариации митохондрий по форме, что зависит от их функционального состояния, могут наблюдаться и в тканях одного типа. Митохондрии — изменчивые и пластичные органеллы.

Внутренняя мембрана митохондрий формирует гораздо более плотный барьер, она значительно больше наружной мембраны и образует множество смежных складок – крист. Эти складки значительно увеличивают площадь поверхности митохондрий. Многие ферментативные реакции происходят более эффективно, если ферменты связаны с митохондриальной поверхностью, что и обеспечивают кристы.

Митохондриальный матрикс играет важную роль. Матриксная поверхность внутренней мембраны включает в себя белковые комплексы, участвующие в синтезе АТФ. Огромное количество метаболических ферментов располагаются в митохондриальном матриксе, включая ферменты, участвующие в окислении липидов, окисление углеводов, в цикле трикарбоновых кислот, или цикле Кребса. Кроме них. В матриксе локализуются митохондриальный геном, а также рибосомы, тРНК, ферменты. Необходимые для транскрипции митохондриальной ДНК и экспрессии соответствующих генов. Число этих генов относительно мало. По сравнению с генами, расположенными в ядре.

Мембраны митохондрий содержат интегральные мембранные белки. Во внешнюю мембрану входятпорины, которые образуют поры и делают мембраны проницаемыми для веществ с молекулярной массой до 10 кДа. Внутренняя же мембрана митохондрий непроницаема для большинства молекул; исключение составляют О2, СО2, Н20. Внутренняя мембрана митохондрий характеризуется необычно высоким содержанием белков (75%). В их число входят транспортные белки-переносчики, ферменты, компоненты дыхательной цепи и АТФ-синтаза. Кроме того, в ней содержится необычный фосфолипид кардиолипин. Матрикс также обогащен белками, особенно ферментами цитратного цикла.

Внутренняя мембрана непроницаема для большинства низкомолекулярных соединений. Она удерживает не только продукты промежуточного метаболизма (например, пируват и ацетил-КоА), но и неорганические ионы (Н+ и Na+). Поэтому в цитоплазме и митохондриях существуют независимые пулы ионов и метаболитов. Напротив, внешняя мембрана содержит порообразующие белки, которые делают ее проницаемой для низкомолекулярных соединений.

Рис.2 Строение и метаболические функции митохондрий

  1.  Метаболические функции

Митохондрии являются «силовой станцией» клетки, поскольку за счет окислительной деградации питательных веществ в них синтезируется большая часть необходимого клетке АТФ (АТР). В митохондриях локализованы следующие метаболические процессы: превращение пирувата в ацетил-КоА, катализируемое пируватдегидрогеназным комплексом: цитратный цикл; дыхательная цепь, сопряженная с синтезом АТФ (сочетание этих процессов носит название «окислительное фосфорилирование»); расщепление жирных кислот путем β-окисления и частично цикл мочевины. Митохондрии также поставляют клетке продукты промежуточного метаболизма и действуют наряду с ЭР как депо ионов кальция, которое с помощью ионных насосов поддерживает концентрацию Са2+ в цитоплазме на постоянном низком уровне (ниже 1 мкмоль/л).

Главной функцией митохондрий является захват богатых энергией субстратов (жирные кислоты, пируват, углеродный скелет аминокислот) из цитоплазмы и их окислительное расщепление с образованием СО2 и Н2О, сопряженное с синтезом АТФ.

Реакции цитратного цикла приводят к полному окислению углеродсодержащих соединений (СО2) и образованию восстановительных эквивалентов, главным образом в виде восстановленных коферментов. Большинство этих процессов протекают в матриксе. Ферменты дыхательной цепи, которые реокисляют восстановленные коферменты, локализованы во внутренней мембране митохондрий. В качестве доноров электронов для восстановления кислорода и образования воды используются НАДН и связанный с ферментом ФАДН2. Эта высоко экзергоническая реакция является многоступенчатой и сопряжена с переносом протонов (Н+) через внутреннюю мембрану из матрикса в межмембранное пространство. В результате на внутренней мембране создается электрохимический градиент. В митохондриях электрохимический градиент используется для синтеза АТФ из АДФ (ADP) и неорганического фосфата (Рi) при катализе АТФ-синтазой. Электрохимический градиент является также движущей силой ряда транспортных систем(см. рис.2).

  1.  Транспортные системы

Обмен между цитоплазмой и матриксом обеспечивается специальными транспортными системами, локализованными во внутренней мембране митохондрий и способными переносить разнообразные вещества (пируват, фосфат, АТФ, АДФ, глутамат, аспартат, малат, 2-оксоглутарат, цитрат, жирные кислоты) по механизмам типа антипорт (обменная диффузия, А),  симпорт  (сопряженный транспорт,S) или унипорт (облегченная диффузия, U). Имеется переносчик и для ионов Са2+, который наряду с ЭР регулирует концентрацию Са2+ в цитоплазме (см. рис.3).

Рис.3. Транспортные системы митохондрий

Большая часть АТФ. продуцируемого митохондриями в матриксе, доставляется в цитоплазму с помощью АДФ/АТФ-транслоказы в обмен на АДФ (обменная диффузия). Фосфат поступает в митохондрии вместе с протонами независимо от транспорта АДФ/АТФ.

Аналогичным образом при участии пируватспецифичного переносчика осуществляется одновременный перенос через внутреннюю мембрану пирувата и протонов.

  1.  Механизм транспорта митохондриальных белков

Митохондрии служат метаболическим центром клетки; эти органеллы – место синтеза АТФ, процесса, требующего участия многочисленных ферментов, большинство из которых поступает из цитозоля. Почти все белки, предназначенные для транспорта в митохондрии, синтезируются на полирибосомах, локализованных в цитозоле.

Белки, предназначенные для транспорта в митохондрии, имеют сигнальный пептид, локализованный на N-конце.  Сигнальные пептиды варьируют в размере от 12 до 18 остатков. Этот участок белка также формирует амфифильный завиток: заряженные остатки сгруппированы на одной стороне альфа-спирали, а неполярные остатки локализованы на другой стороне. Амфифильный завиток соединяется с участком связывания митохондриального распознающего рецептора, локализованного на наружной мембране.

Процесс транспорта достаточно сложен и включает несколько элементов (см. табл.2).

Табл. 2. Основные элементы системы транспорта белка в митохондрию

Элементы

Роль

Рибосомы

Почти все импортируемые белки производятся на полирибосомах в цитозоле.

Сигнальный пептид

Белки, предназначенные для митохондрий, имеют сигнальный пептиды, локализованные на N-конце.

Амфифильный завиток

Сигнальные пептиды формируют амфифильный завиток. Заряженные остатки сгруппированы на одной стороне завитка, а неполярные остатки локализованы на другой стороне.

Митохондриальный распознающий рецептор

Амфифильный завиток взаимодействует со связующим доменом митохондриального рецептора распознавания, локализованного на наружной мембране.

Шапероны

Вновь синтезированные для митохондрий белковые цепи связаны с шаперонными белками, которые способствуют определению правильной укладки и функционирования импортированных белков.

  1.  Митохондриальные шапероны

Вновь синтезированные белки, предназначеные для митохондрий, при подготовке к импорту связываются с другим классом цитозольных белков. Существует несколько типов этих белков, называемых шаперонами. Они обнаруживаются почти во всех клеточных органеллах и в цитоплазме. Кроме других функций, шапероны обеспечивают правильное сворачивание (фолдинг) и окончательную конформацию  других белков, и поэтому необходимы для здоровья клетки и организима.

Шапероны найдены во всех организмах – от бактерий до млекопитающих. В некоторых случаях эти  белки имеют другое название. Одно из семейств шаперонов называется белками теплового шока (hsp). Их обнаружили случайно: исследователи открыли, что определенные белки синтезируются в клетках плодовой мушки при увеличении температуры всего на несколько градусов. Белки теплового шока имеют большую внутривидовую устойчивость и интенсивно экспрессируются во всех клетках даже в нормальных для роста условиях. Их транскрипция и трансляция значительно возрастают пи чрезвычайных условиях внешней среды. Предполагают, что шапероны необходимы для правильного сворачивания белков в условиях теплового стресса.

  1.  Укладка полипептидной цепи: шапероны hsp60 и hsp70

Белки семейств hsp60 (также известного как GroEL) и hsp70 (или DnaK) принимают участие в сворачивании, переносе и формирование более высокой структурной организации белка.

Во внутреннем митохондриальном пространстве hsp60 и hsp70 связываются с развернутым белком и помогают формированию точной конформационной организации. Этот этап является энергозависимым и требует расщепления АТФ.

Наконец, семейство шаперонов  hsp90 принимает участие в регуляции активности некоторых факторов транскрипции и различных белковых киназ. При относительно низкой концентрации белка он легко сворачивается должным образом из-за малой вероятности взаимодействия реактивных групп белка с активными группами других белков. Однако при большой концентрации белка вероятность того, что он сложится должным образом, значительно снижается. Обычно концентрация белка в органеллах эукариотических клеток высока.

  1.  Как работают шапероны

Как утверждалось ранее, шапероны находятся почти во всех органеллах и в цитоплазме. Белки-шапероны действуют в основном путем связывания с активной поверхностью полипептидов, например. с гидрофильной поверхностью. Таким образом, шапероны блокируют эти активные поверхности и эффективно предотвращают агрегацию, облегчая правильную укладку полипептидной цепи.

Шапероны не связываются со своим полипептидным субстратом ковалентно. Часто белки должны быть импортированы в несложенном виде и затем вновь улжены после своего прохождения через мембрану органеллы, что также осуществляется частично благодаря шаперонам.

Например, белки теплового шока связываются с растущим полипептидом как только он освобождается от рибосомы. Эти шапероны удерживают рождающуюся молекулу в конформации, предотвращающей преждевременную случайную укладку и способствующей переносу полипептида в митохондриальное пространство. Транспорт белков в митохондрии и высвобождение упакованного белка –АТР-зависимые процессы.

Некоторые характеристики шаперонов:

  1.  Присутствуют во многих организмах: от бактерий до человека
  2.  Многие называются также белками теплового шока (hsp)
  3.  Некоторые стимулируются при условиях, вызывающих денатурацию вновь синтезированных белков (например, повышение температуры и различные химические вещества)
  4.  Они связываются с развернутым и свернутым белком
  5.  Большинство шеперонов обладает АТРазной активностью с вовлечением АТР или  ADP во взаимодействие белок – шаперон.
  6.  Найдены в различных отделах клетки, таких как цитозоль, митохондрия, полость эндоплазматического ретикулума.

  1.  Транспорт жирных кислот

В митохондриях за перенос жирных кислот отвечает специальная транспортная система. Активированные жирные кислоты в форме ацил-КоА становятся транспортабельными в цитоплазме после взаимодействия с карнитином. Образовавшийся ацилкарнитин транспортируется в матриксе карнитиновым переносчиком, обмениваясь на свободный карнитин. В матриксе ацильные остатки вновь связываются с КоА.(см. рис.3)

  1.   Малатный челнок

Для импорта восстановительных эквивалентов в форме НАДН+Н+  (кофермент-связанного водорода), образующихся в цитоплазме путем гликолиза, в митохондриях имеются несколько челночных систем. В митохондриях млекопитающих этот транспорт осуществляется в основном при помощи челночного механизма, использующего пару малат-оксалоацетат. Основной функцией этого механизма является перенос восстановительных эквивалентов в составе малата. Малат, попадая в матрикс при посредстве переносчика, окисляется до оксалоацетата под действием малатдегидрогеназы. Оксалоацетат переносится обратно в цитоплазму лишь после трансаминирования в аспартат. Поскольку оксалоацетат может образовываться в избыточном количестве, в реакции трансаминирования и последующем транспорте принимает участие глутамат и 2-оксоглутарат. На схеме показано, что малатный челнок функционирует в обоих направлениях, обеспечивая перенос восстановительных эквивалентов от цитоплазматического НАДН в митохондрии без переноса НАД+. В митохондриях насекомых трансмембранный перенос восстановительных эквивалентов осуществляется с помощью глицерофосфатного челнока.

Движущей силой транспортных процессов во внутренней мембране митохондрий служитконцентрационный градиент метаболитов или  электрохимический потенциал . Например, карнитиновая система транспорта жирных кислот работает за счет высоких концентраций ацил-КоА в цитоплазме. Движущей силой импорта фосфата и пирувата служит протонный градиент, в то время как обмен АТФ/АДФ и выброс ионов Са2+ зависят оттрансмембранного потенциала внутренней мембраны митохондрий (см.рис.3).

  1.  Функции митохондрий и энергообразование

Основной функцией митохондрий является синтез АТФ — универсальной формы химической энергии в любой живой клетке. Как и у прокариот, данная молекула может образовываться двумя путями: в результате субстратного фосфорилирования в жидкой фазе (например, при гликолизе) или в процессе мембранного фосфорилирования, связанного с использованием энергии трансмембранного электрохимического градиента протонов (ионов водорода). Митохондрии реализуют оба эти пути, первый из которых характерен для начальных процессов окисления субстрата и происходит в матриксе, а второй завершает процессы энергообразования и связан с кристами митохондрий. При этом своеобразие митохондрий как энергообразующих органелл эукариотической клетки определяет именно второй путь генерации АТФ, получивший название «хемиосмотического сопряжения». По сути это последовательное превращение химической энергии восстанавливающих эквивалентов НАДН в электрохимический протонный градиент ΔμН+ по обе стороны внутренней мембраны митохондрии, что приводит в действие мембранно-связанную АТФ-синтетазу и завершается образованием макроэргической связи в молекуле АТФ.

В целом весь процесс энергообразования в митохондриях может быть разбит на четыре основные стадии, первые две из которых протекают в матриксе, а две последние — на кристах митохондрий:

  1.  Превращение поступивших из цитоплазмы в митохондрию пирувата и жирных кислот в ацетил-СоА;
  2.  Окисление ацетил-СоА в цикле Кребса, ведущее к образованию НАДН;
  3.  Перенос электронов с НАДН на кислород по дыхательной цепи;
  4.  Образование АТФ в результате деятельности мембранного АТФ-синтетазного комплекса.

Ещё в цитоплазме в серии из 10 отдельных ферментативных реакций шестиуглеродная молекула глюкозы частично окисляется до двух трёхуглеродных молекул пирувата с образованием двух молекул АТФ. Затем пируват переносится из цитозоля через наружную и внутреннюю мембраны в матрикс, где первоначально превращается в ацетил-СоА. Этот процесс катализируется крупным пируватдегидрогеназным комплексом, имеющим размер, сопоставимый с размером рибосомы, и состоящим из трёх ферментов, пяти коферментов и двух регуляторных белков. Точно также жирные кислоты, полученные при расщеплении нерастворимых триглицеридов в цитоплазме, переносятся в митохондриальный матрикс в виде ацетил-СоА-производных.

На следующем этапе, также протекающем в матриксе митохондрии, ацетил-СоА полностью окисляется в цикле Кребса. В его работе задействованы четыре отдельных фермента, за каждый цикл обеспечивающие укорочение углеводородной цепи на два атома углерода, которые в дальнейшем превращаются в СО2. Этот процесс обеспечивает образование одной молекулы АТФ, а также НАДН — высокоэнергетического промежуточного соединения, которое легко отдаёт электроны в цепь переноса электронов на кристах митохондрий.

Дальнейшие процессы энергообразования в митохондрии происходят на её кристах и связаны с переносом электронов от НАДН к кислороду. В соответствии с тем, что потребление кислорода в качестве окислителя обычно называют «внутриклеточным дыханием», электронно-транспортную цепь ферментов, осуществляющих последовательный перенос электронов от НАДН к кислороду, часто называют «дыхательной цепью». При этом трансформация энергии окисления осуществляется ферментами, расположенными на кристах митохондрий и осуществляющими векторный (направленный по отношению к сторонам мембраны) перенос протонов водорода из матрикса митохондрии в межмембранное пространство. В этом состоит принципиальное отличие работы оксидоредуктаз дыхательной цепи от функционирования ферментов, катализирующих реакции в гомогенном (изотропном) растворе, где вопрос о направлении реакции в пространстве не имеет смысла.

Весь процесс переноса электрона по дыхательной цепи может быть разбит на три стадии, каждая из которых катализируется отдельным трансмембранным липопротеидным комплексом (I, III и IV), встроенным в мембрану кристы митохондрии. В состав каждого из названных комплексов входят следующие компоненты:

  1.  Большой олигомерный фермент, катализирующий перенос электронов;
  2.  Небелковые органические (простетические) группы, принимающие и высвобождающие электроны;
  3.  Белки, обеспечивающие движение электронов.

Каждый из этих комплексов осуществляет перенос электронов от донора к акцептору по градиенту редокс-потенциала через ряд последовательно функционирующих переносчиков. В качестве последних в дыхательной цепи митохондрий функционируют мигрирующие в плоскости мембраны жирорастворимые молекулы убихинона, а также небольшие (молекулярная масса 13 кДа) водорастворимые белки, содержащие  ковалентно связанный гем и называемые «цитохромами с». При этом три из пяти компонентов, составляющих дыхательную цепь, работают так, что перенос электронов сопровождается переносом протонов через мембрану крист митохондрий в направлении из матрикса в межмембранное пространство.

Дыхательная цепь начинается с комплекса I (НАДН-убихинон-оксидоредуктаза), состоящего из 16-26 полипептидных цепей и имеющего молекулярную массу около 850 кДа. Функциональная активность этого комплекса определяется тем, что он содержит в своём составе более 20 атомов железа, упакованных в ячейки из атомов серы, а также флавин (Фл — производное витамина рибофлавина). Комплекс I катализирует окисление НАДН, отщепляя от него два электрона, которые после «путешествия» по окислительно-восстановительным компонентам комплекса I попадают на молекулу-переносчик, в качестве которой выступает убихинон (Q). Последний способен ступенчато восстанавливаться, принимая на себя по два электрона и протона и, таким образом, превращаясь в восстановленную форму — убихинол (QH2).

Энергетический потенциал (запас энергии) в молекуле убихинола существенно ниже, чем в молекуле НАДН, а разница в подобной энергии временно запасается в виде особого вида — электрохимического протонного градиента. Последний возникает в результате того, что перенос электронов по простетическим группам комплекса I, ведущий к снижению энергетического потенциала электронов, сопровождается трансмембранным переносом двух протонов из матрикса в межмембранное пространство митохондрии.

Восстановленный убихинол мигрирует в плоскости мембраны, где достигает второго фермента дыхательной цепи — комплекса III (bc1). Последний представляет собой димер из субъединиц b и c1 с молекулярной массой более 300 кДа, сформированный из восьми полипептидных цепей и содержащий атомы железа как в серных ячейках, так и в виде комплексов с гемами b(I), b(II) и c1 — сложными гетероциклическими молекулами с четырьмя атомами азота, расположенными по углам металлосвязывающего квадрата. Комплекс III катализирует реакцию восстановления убихинола до убихинона с передачей электронов на атом железа второй молекулы переносчика (находящегося в межмембранном пространстве цитохрома c). Отщепляющиеся при этом от убихинола два протона водорода освобождаются в межмембранное пространство, продолжая формирование электрохимического градиента. Наконец, ещё два протона водорода переносятся в межмембранное пространство митохондрии за счёт энергии электронов, проходящих по простетических группам комплекса III.

Последняя стадия катализируется комплексом IV (цитохром c-оксидаза) с молекулярной массой около 200 кДа, состоящим из 10-13 полипептидных цепей и, помимо двух различных гемов, включающим также несколько атомов меди, прочно связанных с белками. При этом электроны, отбираемые у восстановленного цитохрома c, пройдя по атомам железа и меди в составе комплекса IV, попадают на связанный в активном центре этого фермента кислород, что приводит к образованию воды.

Таким образом, суммарная реакция, катализируемая ферментами дыхательной цепи, состоит в окислении НАДН кислородом с образованием воды. По сути этот процесс заключается в ступенчатом переносе электронов между атомами металлов, присутствующих в простетических группах белковых комплексов дыхательной цепи, где каждый последующий комплекс обладает более высоким сродством к электрону, чем предыдущий. При этом сами электроны передаются по цепи до тех пор, пока не соединятся с молекулярным кислородом, обладающим наибольшим сродством к электронам. Освобождаемая же при этом энергия запасается в виде электрохимического (протонного) градиента по обе стороны внутренней мембраны митохондрий. При этом считается, что в процессе транспорта по дыхательной цепи пары электронов перекачивается от трёх до шести протонов.

Завершающим этапом функционирования митохондрии является генерация АТФ, осуществляемая встроенным во внутреннюю мембрану специальным макромолекулярным комплексом с молекулярной массой 500 кДа. Этот комплекс, называемый АТФ-синтетазой, как раз и катализирует синтез АТФ путём конверсии энергии трансмембранного электрохимического градиента протонов водорода в энергию макроэргической связи молекулы АТФ.


Заключение

Митохондрии — органеллы энергообеспечения метаболических процесов в клетке. Размеры их варьируют от 0,5 до 5-7 мкм, количество в клетке составляет от 50 до 1000 и более.

В клетке митохондрии выполняют функцию дыхания. Клеточное дыхание — это последовательность реакций, с помощью которых клетка использует энергию связей органических молекул для синтеза макроэргических соединений типа АТФ. Образующиеся внутри митохондрии молекулы АТФ переносятся наружу, обмениваясь на молекулы АДФ, находящиеся вне митохондрии. В живой клетке митохондрии могут передвигаться с помощью элементов цитоскелета.

Основные функции митохондрий:

1)играют роль энергетических станций клеткок. В иих протекают процессы окислительного фосфорилирования (ферментативного окисления различных веществ с последующим накоплением энергии в виде молекул аденозинтрифосфата —АТФ);

2)хранят наследственный материал в виде митохондриальной ДНК. Митохондрии для своей работы нуждаются в белкаx, закодированных в генах ядерной ДНК, так как собственная митохондриальная ДНК может обеспечить митохондрии лишь несколькими белками.

Побочные функции — участие в синтезе стероидных гормонов, некоторых аминокислот (например, глютаминовой).

Митохондрии являются главными потребителями кислорода в организме. Кислородная недостаточность (гипоксия) как результат недостаточного снабжения крови кислородом (ишемия) является причиной повреждения тканей вплоть до некроза. Первым признаком гипоксии является набухание митохондрий.

ДНК митохондрий наследуются почти исключительно по материнской линии. Каждая митохондрия имеет несколько участков нуклеотидов в ДНК, идентичных во всех митохондриях (то есть в клетке много копий митохондриальных ДНК), что очень важно для митохондрий, неспособных восстанавливать ДНК от повреждений (наблюдается высокая частота мутаций). Мутации в митохондриальной ДНК являются причиной целого ряда наследственных заболеваний человека.


Список литературы

  1.  Фоллер Д.М,, Шилдс Д., «Молекулярная биология клетки». Руководство для врачей. Пер. с англ. М.: «Издательство БИНОМ». 2006 – 256с., Ил.
  2.  М. Б. Беркинблит, С. М. Глаголев, В. А. Фуралев. Общая биология. — М.: МИРОС, 1999.
  3.  Д. Тейлор, Н. Грин, У. Стаут. Биология. — М.: МИР, 2006.
  4.  Э. Уиллет. Генетика без тайн. — М.: ЭКСМО, 2008.
  5.  Д. Г. Дерябин. Функциональная морфология клетки. — М.: КДУ, 2005.
  6.  Русскоязычный сайт, посвященный строению клеток [Электронный ресурс]. – Режим доступа:  http://yanko.lib.ru/books/biolog/nagl_biochem/212.htm


 

А также другие работы, которые могут Вас заинтересовать

37382. Создание информационной системы «Специальное конструкторское бюро» на языке Delphi 1.79 MB
  Просмотр выбор сортировка данных. Наличие в ней языка программирования позволяет создавать сложные системы обработки данных ориентированные на конкретные задачи и даже под конкретного пользователя. Программа будет работать с помощью графического интерфейса и будет хранить данные в базе данных ccess. Так как в СКБ разрабатываются и производятся различные изделия программа будет позволять решать следующие задачи: добавление записей об изделиях в базу данных; редактирование информации об изделиях; удаление из базы данных записей об...
37384. Малоповерхова житлова будівля 87 KB
  Правила розміщення, і пристрої протипожежних перешкод установлюються протипожежними нормами в залежності від пожежної небезпеки і поверховості будинку. Запобігти поширення вогню при пожежі можна розділивши будинок на окремі відсіки або установити по горизонталі будинку залізобетонні покриття.
37386. Определить потери давления и расходы жидкости на всех участках трубопровода, при нормальном и аварийном режиме работы разветвленного участка 594 KB
  Шифринсона У ВСЕХ ЭТО ФОРМУЛА ОДИНАКОВА МЕТОДА к КП стр 15 Для расчета потерь давления в трубах воспользуемся формулой ДарсиВейсбаха: Потери давления на местных сопротивлениях вычисляются по формуле Вейсбаха : Количество компенсаторов будет равно 8 т. Полные потери давления в магистральном участке высчитываем по формуле: . Следовательно потери давления во всех ветвях параллельного соединения будут одинаковы ∆P1=∆P2=∆P3.
37387. Проектирование и расчет водоснабжения и канализации здания 105.04 KB
  В данной курсовой работе в жилых зданиях запроектирована только система холодного хозяйственно-питьевого водоснабжения, система горячего водоснабжения не рассматривается. Система внутреннего водоснабжения включает вводы в здание, водомерные узлы, разводящие сети, подводки к санитарным приборам, насосные установки, водоразборную, смесительную, запорную и регулирующую арматуру.
37388. Расчет колонны одноэтажного промышленного здания 2.36 MB
  4 Определение геометрических характеристик приведенного сечения.6 Расчет прочности по наклонным сечениям.7 Проверка прочности по нормальным сечениям.2 Расчет сечения 10 на уровне верха консоли.
37389. Проектирование 5-комнатной торцевой блок-квартиры в двух уровнях 89 KB
  ОБЪЕМНОПЛАНИРОВОЧНОЕ РЕШЕНИЕ ЗДАНИЯ. Размеры в осях 342111 м высота этажа – 25 м общая высота здания – 9 м жилая секция состоит из 7 комнат. Конструктивная схема здания – бескаркасная стеновая с продольным расположением несущих стен. Пространственная жесткость здания обеспечивается совместной работой стен и перекрытия.
37390. РАСЧЕТ ЭЛЕКТРОМАГНИТНЫХ ПЕРЕХОДНЫХ ПРОЦЕССОВ 7.85 MB
  Принимая в качестве базисных величин на основном уровне Sб = 60 МВА UбI = 112 кВ определяем базисные величины на других уровнях: кВ; кВ; Составим схему замещения прямой последовательности Рисунок Схема прямой последоательности. Выражаем параметры схемы замещения прямой последовательности рис. з генератор Г12: ; и асинхронный двигатель АД: ; ; Найдем и для этого свернем схему прямой последовательности рис.2 Рисунок Сворачивание схемы прямой последовательности.