98895

Импульсы Дирака и Кронекера. Интегральная и линейная дискретная свертки

Реферат

Коммуникация, связь, радиоэлектроника и цифровые приборы

Импульсы Дирака и Кронекера. Интегральная и линейная дискретная свертки. В качестве математической модели единичного импульса при анализе аналоговых сигналов используют дельта-функцию.

Русский

2016-07-14

72.41 KB

0 чел.

Факультет Компьютерных Наук

Омского Государственного Университета им. Ф.М. Достоевского

РЕФЕРАТ

ТЕМА: "Импульсы Дирака и Кронекера. Интегральная и линейная дискретная свертки. "

Руководитель,

__________     Коваленко Ю.В.

Исполнитель,

                                                            __________      Вергизов Д. Г.

- Омск 2013 -

Содержание

Введение 3

Импульсы Дирака и Кронекера . 4

Интегральная и линейная дискретная свертки 9

Заключение 13

Список использованной литературы 14

Введение:

Цифровая обработка сигналов оперирует с дискретными преобразованиями сигналов и обрабатывающих данные сигналы систем. Математика дискретных преобразований зародилась в недрах аналоговой математики еще в 18 веке в рамках теории рядов и их применения для интерполяции и аппроксимации функций, однако ускоренное развитие она получила в 20 веке после появления первых вычислительных машин. В принципе, в своих основных положениях математический аппарат дискретных преобразований подобен преобразованиям аналоговых сигналов и систем. Однако дискретность данных требует учета этого фактора, и его игнорирование может приводить к существенным ошибкам. Кроме того, ряд методов дискретной математики не имеет аналогов в аналитической математике. Динамическая форма представления сигналов соответствует их естественной и привычной для нас форме математического описания в виде функций независимых переменных (аргументов). Моделирование и анализ линейных стационарных систем обработки сигналов произвольной формы в динамическом представлении базируется на разложении сигналов по единичным импульсам простейшей формы.

Импульсы Дирака и Кронекера: 

Единичные импульсы. В качестве математической модели единичного импульса при анализе аналоговых сигналов используют дельта-функцию.

Дельта-функция или функция Дирака. По определению, дельта-функция описывается следующими математическими выражениями (в совокупности):

d(t-t) = 0 при t № t, d(t-t) dt = 1.

Функция d(t-t) не является дифференцируемой, и имеет размерность, обратную размерности ее аргумента, что непосредственно следует из безразмерности результата интегрирования. Значение дельта-функции равно нулю везде за исключением точки t, где она представляет собой бесконечно узкий импульс с бесконечно большой амплитудой, при этом площадь импульса равна 1.

Дельта-функция является полезной математической абстракцией. На практике такие функции не могут быть реализованы с абсолютной точностью, так как невозможно реализовать значение, равное бесконечности, в точке t = t на аналоговой временной шкале, т.е. определенной по времени также с бесконечной точностью. Но во всех случаях, когда площадь импульса равна 1, длительность импульса достаточно мала, а за время его действия на входе какой-либо системы сигнал на ее выходе практически не изменяется (реакция системы на импульс во много раз больше длительности самого импульса), входной сигнал можно считать единичной импульсной функцией со свойствами дельта - функции.

Функция Кронекера. Для дискретных и цифровых систем в качестве единичного импульса используется дискретный интегральный аналог дельта-функции - функция единичного отсчета d(kDt-nDt), которая равна 1 в координатной точке k = n и нулю во всех остальных точках, при этом функция d(kDt-nDt) определена только для целых значений координат k и n.

Математические выражения d(t-t) и d(kDt-nDt) называют также импульсами Дирака и Кронекера. Однако, применяя такую терминологию, не следует забывать, что это не просто единичные импульсы в координатных точках t и nDt, а импульсные функции, определяющие как значения импульсов в определенных координатных точках, так и нулевые значения по всем остальным координатам, в пределе от -Ґ до Ґ .

Разложение сигнала по единичным импульсам. Импульсы Дирака и Кронекера используются для разложения, соответственно, произвольных аналоговых сигналов s(t) и дискретных сигналов s(kDt) в непрерывную последовательность неперекрывающихся (ортогональных) импульсов:

s(t) =s(t)d(t-t) dt. (3.1.1)

s(kDt) =s(nDt)d(kDt-nDt). (3.1.1')

Для аналоговых сигналов разложение (3.1.1) в физическом представлении эквивалентно сканированию значений сигнала s(t) в моменты времени t = tбесконечно узкой щелью, бегущей вдоль оси t. Для цифровых сигналов эта щель равна одному отсчету. Пример разложения дискретного сигнала приведен на рис. 3.1.1.

Единичные импульсные функции d(t-t), -Ґ <t< Ґ , и d(kDt-nDt), -Ґ <n<Ґ , образуют в бесконечномерных пространствах системы координатных базисов {d(t-t)} и {d(kDt-nDt)}, т.к. они не перекрываются и, соответственно, взаимно ортогональны. По этим координатным системам и производится разложение сигналов s(t) и s(kDt). Совокупности проекций сигналов на координатные базисы представляют собой векторные описания сигналов.

Импульсный отклик линейной системы. Если на вход линейной системы в момент времени t = 0 подать единичный импульс (Дирака или Кронекера, в зависимости от типа системы), то на выходе мы получим реакцию системы на единичный входной сигнал. Эта реакция называется функцией импульсного отклика системы или импульсной характеристикой. Она однозначно определяется оператором преобразования h(..):

y(t) = T[d(t-0)] = h(t). (3.1.2)

y(kDt) = T[d(kDt-0)] = h(kDt). (3.1.2')

Импульсный отклик аналоговой системы на входную дельта-функцию также в определенной степени представляет собой математическую абстракцию идеального преобразования. С практической точки зрения под импульсным откликом можно понимать отображение реакции системы на импульсный входной сигнал произвольной формы с единичной площадью, если длительность этого сигнала пренебрежимо мала по сравнению с временной (координатной) разрешающей способностью системы. Для цифровых систем импульсный отклик однозначно определяется реакцией системы на импульс Кронекера. Функцию импульсного отклика называют также весовой функцией системы.

Очевидно, что в линейных и инвариантных к сдвигу системах форма импульсного отклика не зависит от времени прихода входного сигнала и определяет только его положение на временной оси. Так, если входной импульс задержан (относительно 0) на время to, то соответствующий выходной сигнал будет определяться выражением:

y(t) = T[d(t-to)] = h(t-to).

В любой системе, работающей в реальном масштабе времени, сигнала на выходе системы не может быть, если нет сигнала на ее входе. Отсюда следует односторонность импульсного отклика физических систем:

h(t-t) = 0 при t<t.

Для программных систем, работающих с зарегистрированными массивами цифровых данных, импульсный отклик может быть и двусторонним, так как при обработке сигналов в любой текущей точке kDt системе доступны как "прошлые" отсчеты kDt-nDt, так и "будущие" отсчеты kDt+nDt. Это резко расширяет возможности программной обработки сигналов по сравнению с физическими системами.

На рисунке 3.1.2 приведен пример импульсного отклика h(t) элементарной физической системы преобразования электрических сигналов – динамической интегрирующей RC-цепи. Подобные схемы очень часто применяются в полевых геофизических приборах (например, в радиометрах) в качестве интенсиметров - измерителей средней скорости счета импульсных потоков сигналов.

При подаче на вход RC-цепи единичного и очень короткого (Dt << RC) импульса заряда Dq емкость С заряжается до напряжения Vо =Dq/C, и начинает разряжаться через сопротивление R, при этом напряжение на емкости изменяется по закону v(t) = Voexp(-t/RC) = (Dq/C)exp(-t/RC). Отсюда, импульсный отклик RC-цепи на единичный входной сигнал с единичным значением заряда Dq = 1 равен: h(t) = (1/C)exp(-t/RC), где форма отклика определяется функцией экспоненты, а множитель (1/С) является масштабным преобразователем сигнала (заряда в напряжение). По существу, импульсным откликом системы определяется доля входного сигнала, которая действует на выходе системы по истечении времени t после поступления сигнала на вход (запаздывающая реакция системы).

Если функция импульсного отклика системы известна, то, с учетом принципа суперпозиции сигналов в линейной системе, можно выполнить расчет реакции системы в любой произвольный момент времени на любое количество входных сигналов в любые моменты времени их прихода путем суммирования запаздывающих реакций системы на эти входные сигналы. На рис. 3.1.2 приведен пример входного сигнала s(t) для RC-цепи в виде последовательности импульсов и реакция системы y(t) на такой входной сигнал, образованная суммированием реакций системы на каждый импульс.

Допустим, что на вход RC-цепи в моменты времени t1=1 и t2=2 поступили очень короткие (по сравнению со значением RC) импульсы заряда величиной A и В. Математически это можно отобразить сигналом s(t) = q1(t)+q2(t), где q1(t) = AЧ d(t-t1) и q2 = BЧ d(t-t2). Выходной сигнал системы при известном импульсном отклике h(t) отобразится формулой:

y(t) = T[q1(t)+q2(t)] = T[Ad(t-t1)]+T[Bd(t-t2)] = AЧ T[d(t-t1)]+BЧ T[d(t-t2)] = AЧ h(t-t1)+BЧ h(t-t2).

При расчете значений выходного сигнала в произвольный момент времени t после прихода на вход системы сигналов q1 и q2, например, для t = 5, для каждого из сигналов вычисляются значения их запаздывающих реакций: y1 = AЧ h(5-1) = AЧ h(4) и y2 = BЧ h(5-2) = BЧ h(3), после чего значения запаздывающих реакций суммируются у = у1+у2. Пример этой операции можно видеть на рис. 3.1.3, где для удобства графического представления приняты значения А=1 и В=1. Сущность операции не изменяется при любых значениях А и В, а в общем случае и для любого количества импульсов.

Однако эту же операцию можно рассматривать и с другой позиции. Развернем импульсный отклик h(t) системы на 1800 и поместим его начало h(0) непосредственно в точку, для которой нужно выполнить расчет выходного сигнала, т.е. в точку t=5 для нашего примера. Если теперь отсчет координат для функции h(t) повести назад от точки расчета по аргументу t, т.е. перейти на вычисление h(t), где значение tизменяется от 0 и далее (в пределе до Ґ ), то нетрудно убедиться (на рисунке это наглядно видно), что функция h(t) пересечет входные импульсы на тех же значениях у1 и у2. Для этих точек пересечения первого и второго импульсов соответственно имеет место t1 = t-t1 и t2 = t-t2, как и при прямом методе расчета запаздывающих реакций при расчете значений h(t-t1) и h(t-t2). После умножения полученных значений h(t1) и h(t2) на значения входного сигнала А и В, получаем полную аналогию: y1 = AЧ h(t1) = AЧ h(t-t1) и y2 = BЧ h(t2) = BЧ h(t-t2), и соответственно суммарный сигнал у = у1+у2.

Такое, чисто математическое представление расчета более удобно для составления математических алгоритмов вычислений. Условно этот процесс для коротких входных импульсных сигналов может быть представлен в следующем виде. Для любой точки расчета ti выходного сигнала инвертированная по координатному направлению функция импульсного отклика h(t) помещается в эту точку ti и просматривается по своей координате t с одновременным синхронным просмотром входного сигнала s(t) назад от точки расчета (прошлые значения входного сигнала) по координатам ti-t. Значения всех встреченных при просмотре импульсов s(ti-t) перемножаются со значениями h(t) и суммируются. Тем самым, для каждой текущей точки расчета ti в аналоговой системе выполняется операция:

y(ti) =h(t)Ч s(ti-t) dt. (3.1.3)

Соответственно в цифровых системах для произвольной точки k:

y(kDt) =h(nDt)Ч s(kDt-nDt). (3.1.3')

Полученная сумма значений и будет представлять собой запаздывающую реакцию системы на все импульсы, поступившие на вход системы до текущей точки расчета выходного сигнала.

Таким образом, для линейных и стационарных систем легко определить их реакцию на любой входной сигнал, если известен импульсный отклик систем на единичный входной сигнал.

Интегральная и линейная дискретная свертки:

Свертка – основной процесс в цифровой обработке сигналов. Поэтому важно уметь эффективно ее вычислять.

Уравнение дискретной свертки двух функций (сигналов) может быть получено непосредственно из интегрального уравнения свертки при замене интегрирования суммированием мгновенных значений функций с шагом Dt:

y(kDt) = Dth(nDt) s(kDt-nDt). (6.4.1)

При выполнении дискретной свертки мы имеем дело с цифровыми массивами, при этом шаг дискретизации для массивов по физическому аргументу свертки должен быть равным и принимается за 1, а в качестве аргумента используется нумерация отсчетов в массивах:

y(k) =h(n) s(k-n) є hsk-n є yk. (6.4.1')

y(k) = h(n) * s(k-n) є s(k) * h(n) є sk * hn.

Техника свертки приведена на рис. 6.4.1. Для вычисления свертки массив одной из функций (sk- входного сигнала) располагается по ходу возрастания номеров. Массив второй функции (h- более короткой, оператор свертки), строится параллельно первому массиву в обратном порядке (по ходу уменьшения номеров, в режиме обратного времени). Для вычисления yk значение hрасполагается против sk, все значения sk-n перемножаются с расположенными против них значениями hn и суммируются. Результаты суммирования являются выходным значением функции yk, после чего оператор hсдвигается на один номер k вперед (или функция sсдвигается ему навстречу) и вычисление повторяется для номера k+1 и т.д.

В начальный момент свертки при вычислении значений yоператор hn, построенный в режиме обратного времени, "зависает" для значений k-n при n>k против отсутствующих отсчетов входной функции. "Зависание" исключают либо заданием начальных условий - дополнительных отсчетов, чаще всего нулевых или равных первому отсчету входной функции, либо началом свертки с отсчета входной функции k = n с соответствующим сокращением интервала выходной функции. Для операторов со значениями -n (вперед по времени) такой же момент может наступать и в конце входного массива.

Пример. Уравнение свертки: yk =bn xk-n = bo xk + b1 xk-1 + b2 xk-2. Значения оператора bn:

bo = 5, b1 = 3, b2 = 2. Входной сигнал: xk = {0,1,0,0,0}, начальные условия: x-n = 0.

Расчет выходного сигнала:

yo = 5xo + 3x-1+ 2x-2 = 5 · 0 + 3 · 0 + 2 · 0 = 0, y1 = 5x1 + 3xo + 2x-1 = 5 · 1 + 3 · 0 + 2 · 0 = 5,

y2 = 5x2 + 3x1 + 2xo = 5 · 0 + 3 · 1 + 2 · 0 = 3, y3 = 5x3 + 3x2 + 2x1 = 5 · 0 + 3 · 0 + 2 · 1 = 2,

y4 = 5x4 + 3x3 + 2x2 = 5 · 0 + 3 · 0 + 2 · 0 = 0, y5 = 5x5 + 3x4 + 2x3 = 5 · 0 + 3 · 0 + 2 · 0 = 0

Выходной сигнал: yk = {0, 5, 3, 2, 0}

Заметим: свертка функции оператора с единичным входным сигналом представляет собой повторение функции оператора свертки на выходе.

На рис. 6.4.2 приведен пример выполнения дискретной свертки каузальным (односторонним) и четным (симметричным, двусторонним) оператором одного и того же сигнала.

Рис. 6.4.2. Примеры выполнения дискретной свертки.

Прямое вычисление свертки требует K·N умножений, где K – длина исходного сигнала, а N – длина ядра свертки. Как длина сигнала, так и длина ядра свертки может достигать нескольких тысяч точек, и число умножений становится огромным.

Для дискретной свертки действительны все свойства и теоремы интегральной свертки. В частности, свертка функций в координатной области отображается произведением их спектров в частотной области, а умножение в координатной области эквивалентно свертке в частотной области. Это значит, что для выполнения свертки двух сигналов можно перевести их в частотную область, перемножить их спектры, и перевести результат обратно во временную область, т.е. действовать по следующей схеме:

s(k) Ы S(w), h(n) Ы H(w), Y(w) = S(w)Ч H(w), Y(wЫ y(k).

С появлением алгоритмов БПФ, позволяющих быстро вычислять преобразования Фурье, вычисление свертки через частотную область стало широко использоваться. При значительных размерах сигналов и длины ядра свертки такой подход позволяет в сотни раз сократить время вычисления свертки.

Выполнение произведения спектров может производиться только при одинаковой их длине, и оператор h(n) перед ДПФ необходимо дополнять нулями до размера функции s(k).

Второй фактор, который следует принимать во внимание, это цикличность свертки при ее выполнении в спектральной области, обусловленная периодизацией дискретных функций. Перемножаемые спектры являются спектрами периодических функций, и результат на концевых интервалах может не совпадать с дискретной линейной сверткой, где условия продления интервалов (начальные условия) задаются, а не повторяют главный период.

На рис. 6.4.3 приведены результаты свертки сигнала sk, заданного на интервале k=(0-50), с функцией h= aЧ exp(-aЧ n), a = 0.1. Свертка, выполненная через ДПФ, в левой части интервала резко отличается от линейной свертки. Характер искажения становится понятным, если дополнить главный интервал с левой стороны его периодическим продолжением (на рисунке показана часть левого бокового периода, свертка с которым заходит в главный период). Для операторов hn со значениями n, вперед по положению, аналогичные искажения появятся и в правой части главного периода. Для устранения таких искажений сигнальная функция должна продлеваться нулями на размер оператора h(n), что исключит наложение боковых периодов главной трассы функции. Следовательно, перед переводом функций s(k) и h(n) в спектральную область их размер должен продлеваться нулями до длины K+N при односторонних операторах h(n), или до длины K+2N при двусторонних операторах h(n).

Заключение:

При выполнении свертки через БПФ ощутимое повышение скорости вычислений появляется только при большой длине функций и операторов (например, M>1000, N>100). Следует также обращать внимание на разрядность результатов, т.к. перемножение чисел дает увеличение разрядности в 2 раза. При ограниченной разрядности числового представления с соответствующим округлением это может приводить к погрешностям суммирования. В системах оперативной обработки данных часто возникает потребность вычислить свертку очень сигнала, поступающего на вход системы последовательными порциями (например, при получении данных от датчиков скважинных приборов). В таких случаях применяется так называемая секционная свертка. Суть ее состоит в том, что каждая из этих частей сворачивается с ядром отдельно, а затем полученные части объединяются. Для объединения достаточно размещать их друг за другом с наложением (перекрытием) в N-1 точку (N – длина ядра свертки), и производить суммирование в местах перекрытия.

Литература

1. Баскаков С.И. Радиотехнические цепи и сигналы: Учебник для вузов. - М.: Высшая школа, 1988.

2. Бендат Дж., Пирсол А. Прикладной анализ случайных данных. – М.: Мир, 1989.

3. Гольденберг Л.М. и др. Цифровая обработка сигналов: Учебное пособие для вузов. - М.: Радио и связь, 1990.

4. Канасевич Э.Р. Анализ временных последовательностей в геофизике. - М.: Недра, 1985.

5. Никитин А.А. Теоретические основы обработки геофизической информации: Учебник для вузов. - М.: Недра, 1986.

6. Оппенгейм А.В., Шафер Р.В. Цифровая обработка сигналов. – М.: Связь, 1979.

 


 

А также другие работы, которые могут Вас заинтересовать

30388. Системы автоматизированного проектирования (САПР) РЭС 147 KB
  Лекция: Системы автоматизированного проектирования САПР РЭС В лекции приводятся основные определения назначение и принципы систем автоматизированного проектирования САПР. Даются сущность и схема функционирования САПР. Показано место САПР РЭС среди других автоматизированных систем. Рассматриваются структура и разновидности САПР.
30389. Технические средства САПР и их развитие. Требования, предъявляемые к техническому обеспечению 260 KB
  Лекция: Технические средства САПР и их развитие Формулируются требования предъявляемые к техническому обеспечению САПР. Рассматриваются структура и состав технического обеспечения САПР. Основное назначение лекции дать общее представление о техническом обеспечении САПР: предъявляемых к нему требованиях структуре составе и архитектуре 5. Требования предъявляемые к техническому обеспечению Используемые в САПР технические средства должны обеспечивать: выполнение всех необходимых проектных процедур для которых имеется соответствующее...
30390. Основные особенности и достижения глобальной раннеклассовой цивилизации 37.74 KB
  Возникновение частной собственности разделение общества на классы появление социальных институтов Переход от общинной собственности к частной передаваемой по наследству членам своей семьи преодоление принципа уравнительного распределения возможность обособленного присвоения средств и результатов производства – все это вызвало экономический интерес к приумножению собственности на благо отдельной личности а значит открылась возможность повышать производительность труда. социальных групп людей занимавших свое место в системе...
30391. Локальная цивилизация Древнего Египта: развитие и основные достижения 35.11 KB
  Локальная цивилизация Древнего Египта: развитие и основные достижения Эффективное использование благ Нила было невозможно без коллективного и организованного труда всех живущих в его долине. Моноотраслевая экономика экстенсивное развитие ирригационная система земледелия экономически оправданное рабство труд рабов использовался круглый год; труд на ограниченном легко контролируемом пространстве Политика. Южное направление – экспансия рабы полезные ископаемые развитие ирригации. Северное направление – поддержка и развитие торговых...
30392. Локальная цивилизация Древнего Шумера: развитие и основные достижения 40.75 KB
  На основе этих технологий шумеры пытаются продолжать вести хозяйство на новых землях и строят системы осушения почвы. Обслуживание ирригационной системы неизбежно привело к распространению рабского труда. Аккат Саргон Основные направления политики Саргона и его династии: создание единой ирригационной системы; поддержание постоянной армии 5400 чел. Ирригационные системы шумеров были сложнее египетских но культурных сооружений они оставили меньше.
30393. Локальная цивилизация Древнего Китая: развитие и основные достижения 35.86 KB
  Появление городской цивилизации Шан 1812 вв. В квазигосударстве Шан зарождалась пиктографическая письменность картинки. Основу культовой практики Шан составляло представление о переселении душ. союз племен Чжоу захватывает государство Шан.
30394. Локальная цивилизация Древней Персии (империя Ахеменидов): развитие и основные достижения 34.36 KB
  Рабы участвовали в экономике имели экономическую свободу так как раба не выгодно было иметь лучше продать больше продукции чем кормить его. Знать освобождается от налогов; региональная элита осуществляет экономическое управление в своей области сатрапии; кастовое общество но все социальные группы получают широкую экономическую самостоятельность; поскольку все социальные группы вовлечены в торговлю во внутреннем рынке они вынуждены пользоваться единой денежной системой и становятся зависимы от центральной власти; восточную деспотию в...
30395. Основные особенности и достижения глобальной античной цивилизации 31.46 KB
  Преобладало мелкое хозяйство крестьян и ремесленников в Римской империи создавались крупные рабовладельческие латифундии ремесленные производства. Возникают мировые империи но они недолговечны и быстро распадаются. Наиболее прочная – Римская империи политическое и экономическое верховенство центра–метрополии над провинциями устойчивые торговые связи смешение культур.
30396. Локальная цивилизация Древней Греции: развитие и основные достижения 32.34 KB
  Олигархия признак знатности – богатство Общее между тремя формами правления – коллегиальный принцип принятия решений на основе консенсуса т. демократический принцип правления. Многоотраслевая экономика; переработка с х продукции масло вино; разные формы правления – тирания демократия аристократия олигархия; мифологическое сознание; развитие теоретических наук; человек – объект культуры гелиоцентризм атомарная теория; всеобщее образование.