9890

Принцип максимума Понтрягина

Реферат

Математика и математический анализ

Принцип максимума Понтрягина. Эффективным средством исследования задач оптимального управления является принцип максимума Понтрягина, представляющий собой необходимое условие оптимальности в таких задачах. Формулировка принципа максимума. Рассмотрим...

Русский

2013-03-18

177 KB

104 чел.

Принцип максимума Понтрягина.

Эффективным средством исследования задач оптимального управления является принцип максимума Понтрягина, представляющий собой необходимое условие оптимальности в таких задачах.

Формулировка принципа максимума.

Рассмотрим задачу оптимального управления, являющуюся частным случаем задачи, сформулированной выше

 

        (2.1)

 

где              (2.2)

При этом предполагается, что моменты фиксированы, т.е. рассматривается задача с закрепленным временем; множество U не зависит от времени, фазовые ограничения отсутствуют. Положим

,

где - константа,

Функция H называется функцией Гамильтона.

Система линейных дифференциальных уравнений  относительно переменных называется сопряженной системой, соответствующей управлению u и траектории x. Здесь

 

В более подробной покоординатной записи сопряженная система принимает вид

    (2.3)

Система (2.3) имеет при любых начальных условиях единственное решение , определенное и непрерывное на всем отрезке .

Следующая теорема выражает необходимые условия оптимальности в задаче (2.1).

Теорема (принцип максимума Понтрягина).

Пусть функции и, имеют частные производные по переменным и непрерывны вместе с этими производными по совокупности аргументов . Предположим, что (u,x) – решение задачи (2.1). Тогда существует решение сопряженной системы (2.3), соответствующей управлению u и траектории x, и константа  такие, что

при , и выполняются следующие условия:

a) (условие максимума) при каждом  функция Гамильтона ,

достигает максимума по  при v=u(t), т.е.

    (2.4)

б) (условие трансверсальности на левом конце траектории) существуют числа , такие, что

       (2.5)

в) (условие трансверсальности на правом конце траектории) существуют числа , такие, что

     (2.6)

Центральным в теореме является условие максимума – (2.4).

Если отказаться от предположения о том, что конечный момент времени T фиксирован, то теорема останется справедливой за исключением условия трансверсальности на правом конце траектории. Условие (2.6) необходимо заменить условием

 

и добавить еще одно условие трансверсальности на правом конце траектории:

 

Пример применения принципа максимума.

1. Простейшая задача оптимального быстродействия.

 

Пусть точка движется по прямой в соответствии с законом

 

Таким образом, оптимальное управление u может принимать лишь два значения +1 или -1.

Условие максимума (2.4) позволяет, в принципе, найти управление u как функцию параметров  

     (2.7)

Рассмотрим систему дифференциальных уравнений

 

       (2.8)

объединяющую систему уравнений движения объекта и сопряженную систему.

Опишем численный метод. Для этого рассмотрим краевую задачу для системы дифференциальных уравнений (2.8) с краевыми условиями (2.5),(2.6), а также выписанными на основе (2.2) краевыми условиями

    (2.9)

Эта задача называется краевой задачей принципа максимума.

Задав произвольные начальные условия и решив каким-либо численным методом задачу Коши для системы (2.8), можно найти . При этом на каждом шаге численного интегрирования значение находится из решения вспомогательной оптимизационной задачи (2.7) (считаем, что параметр задан и равен либо 0, либо -1).

Значения являются очевидно, некоторыми функциями от a и b:

 

 Решение краевой задачи принципа максимума сводится, таким образом, к решению полученной из (2.9), (2.5), (2.6) системы уравнений

 

 

 

 

Эта система содержит 2n+m неизвестных и состоит из 2n+m уравнений. Ее решение можно находить известными численными методами, например методом Ньютона.

 

Отметим, что вычисление значений весьма трудоемко, так как требует при каждом (a,b) решения задачи Коши для системы дифференциальных уравнений (2.8). Именно в таких случаях особое значение приобретает изучение вопросов эффективности численных методов и построения оптимальных методов.

При реализации на ЭВМ методов решения задач оптимального управления, основанных на необходимых условиях экстремума, могут встретиться также значительные трудности, вызванные некорректностью постановки исходной и вспомогательных задач и некоторыми особенностями краевой задачи принципа максимума. Это приводит к необходимости применения методов регуляризации, учета специфики конкретной решаемой задачи, ее физического смысла и т.п.

Другие численные методы, не связанные непосредственно с принципом максимума, основаны на редукции исходной задачи к некоторой конечномерной задаче математического программирования. Их называют иногда прямыми методами (впрочем, разделение вычислительных методов на прямые и непрямые довольно условно). Конечномерные аналоги задач оптимального управления имеют особенности, позволяющие эффективно применять некоторые методы нелинейного, динамического программирования и т.д. Продемонстрируем пример такого подхода.

Рассмотрим следующую задачу оптимального управления

 

 

   (2.10)

где моменты времени фиксированы. Это задача более общего вида, чем (2.1), ибо в (2.10) U зависит от времени и имеются фазовые ограничения произвольного вида, которые, в частности, могут содержать ограничения на концах траектории вида (2.2)

Зафиксируем моменты времени и заменим задачу (2.10) ее конечноразностным аналогом

 

 

 

 

Положив

 

задачу можно переписать в виде

 

 

 

 

Мы получили задачу математического программирования с переменными

 

 

Задав начальное состояние и управление , по формулам легко вычислить траекторию ( ). Тем самым (2.11) сводится к задаче с переменными , и ее размерность, таким образом, оказывается равной n+Nr.

Для решения задачи (2.11) часто применяют метод динамического программирования. В данном случае этот метод выглядит следующим образом. Введем функцию

 

где минимум берется по таким  что

 

(будем предполагать, что все фигурирующие здесь и ниже минимумы достигаются). Если множество таких наборов пусто, то значение не определено. Нетрудно видеть, что

 

  (2.12)

где минимум берется по таким , что значение определено.

Положив и проводя вычисления по формулам (2.12) при k=N-1,N-2,…0 можно найти решение задачи (2.11).

Действительно, пусть - значение управления, реализующее минимум в (2.12). Ясно, что значение задачи  (2.11), т.е. минимальное значение минимизирующей функции, равно , где минимум берется по таким , что значение определено. Оптимальное управление и оптимальная траектория находятся, очевидно, по формулам

       (2.13)

При численной реализации данного метода сеточные аппроксимации множеств , т.е. некоторые конечные множества

 

Затем строятся множества , которые служат сеточными аппроксимациями интересующих  нас подмножеств (i=0,…,N-1).

Далее по формулам (2.12) вычисляются значения для

и т.д. причем при каждом k минимум в (2.12) берется по . После того как найдена точка минимизирующая решение задачи определяется формулами (2.13).

Отметим, что дискретные задачи оптимального управления встречаются на практике (например, при описании импульсных систем) и потому представляют интерес не только как конечноразностные аналоги непрерывных задач.

Задачи оптимизации управляемых процессов, или как они будут в дальнейшем называться, задачи оптимального управления, составляют один из широких классов экстремальных задач и имеют важное прикладное значение.

Принцип максимума Понтрягина.

 Предложен Л.С. Понтрягиным в 1956 г.

Рассмотрим процесс, описываемый системой ОДУ:

       (*)

x- n-мерный вектор состояния (фазовые координаты)

u – r-мерный вектор управляющих воздействий

f – n-мерная вектор-функция.

Т.к. t не входит в (*) явно, то система автономная.

Любая система может быть сведена к (*), если положить .

Обычно на и накладываются ограничения.

Будем полагать

          (**)

где U-замкнутая ограниченная область не зависящая от x и t.

Управление  называется допустимым. Кроме того  и удовлетворяет уравнению (*).

Примеры ограничений:

1)

2)

3)

Предполагаем также, что непрерывна и имеет непрерывные частные производные по .

Необходимо найти такое  при , чтобы система, двигаясь по траектории в соответствии с (*), обеспечивала минимум некоторого функционала J.

Обычно функционал J есть функция от части фазовых координат в начале и в конце траектории:

        (***)

где  - некоторые составляющие вектора x в начале (t=0) и в конце траектории ( ). В задаче на максимальное быстродействие ; Полагая .

Часть фазовых координат, не вошедших в (***) может быть закреплена

 

 

Рассмотрим для простоты задачу. Задача с конечным интервалом времени, фиксированным левым концом и свободным правым.

     (1)

      (2)

Управление u(t) в силу ограничения (**) следует искать среди кусочно-непрерывных функций. (В вариационном исчислении искомое решение принадлежало классу непрерывных функций).

Пусть - оптимальная траектория и оптимальное управление. - это вектор, координаты которого могут иметь на отрезке разрывы первого рода в конечном числе точек.

  - б.м. величина;  - б.м. отрезок времени.

Дадим управлению вариацию, заменив на б.м. интервале на другое управление u, не меняя вне этого интервала [“Игольчатая вариация”].

При этом приращения при  вовсе не должны быть сколь угодно малой величиной.

Игольчатая вариация относится к классу кусочно-непрерывных функций, среди которых мы ищем оптимальное управление.

Несмотря на конечную величину , влияние этой вариации на последующее движение объекта – бесконечно мало, т.к. влияние любого импульса (короткого) на систему оценивается  величиной его площади (которая – б.м.)

В результате варьирования на б.м. интервале движение системы x начиная с момента отличается от оптимального .

 

Начиная с момента , вариация траектории удовлетворяет некоторому дифференциальному уравнению с начальным условием:

  (3)

Формула (3) следует из разложения величин и в ряд Тейлора

 

с учетом того что = и принимая во внимание уравнение движения (2).

Согласно (2) приращение на интервале является решением уравнения

     (4)

с начальным условием (3), имеющим порядок малости .

Т.к. решения дифференциальных уравнений непрерывно зависят от начальных условий, то .      (5)

Поэтому в (4) правую часть можно линеаризовать, разлогая в ряд Тейлора и отбрасывая члены порядка и выше.

     (6)

Т.к. , то первая компонента вектора в точке есть вариация функции

, причем     (7)

в силу оптимальности траектории .

Введем функцию , удовлетворяющую условию

      (8)

Уравнение следует из условия (8) постоянства скалярного произведения для каждого

    (9)

С учетом (6) (при )

     (10)

Из условия произвольности

    (11)

Из (7)-(8) следуют граничные условия:

        (12)

Решая (11) при условии (12), получаем и тогда условия (7)-(8) приобретают вид:

     (13)

вместо подставляем его значение (3), выраженное через правую часть уравнения (2) и получаем неравенство

    (14)

Функция называются функцией Гамильтона.

Из (14) следует, что на оптимальной траектории функция Гамильтона достигает своего максимума.

Момент начальной вариации был выбран произвольно на , следовательно это верно для всего интервала.

  (16)

Принцип максимума Понтрягина.

Принцип максимума является необходимым условием оптимальности.

Для некоторых классов задач он является и достаточным, но это требует доказательства в каждом конкретном случае.

Введение Гамильтониана H позволяет упростить запись основного уравнения (2) и сопряженного (11)

 

        (17)

Вместе с краевыми условиями эта система представляет собой двухточечную нелинейную краевую задачу. Входящие в (17) управление выражается через и из условий оптимальности (16).


 

А также другие работы, которые могут Вас заинтересовать

33643. Сетевые анализаторы и снифферы 63 KB
  Главный недостаток технологии Ethernet незащищенность передаваемой информации Метод доступа положенный в основу этой технологии требует от узлов подключенных к сети непрерывного прослушивания всего трафика. Узлы такой сети могут перехватывать информацию адресованную своим соседям. В общем смысле слово сниффер обозначает устройство подключенное к компьютерной сети и записывающее весь ее трафик подобно телефонным жучкам записывающим телефонные разговоры. В то же время сниффером программа запущенная на подключенном к сети узле и...
33644. Защита на канальном уровне 549.5 KB
  Технология создания защищенного виртуального канала по протоколу PPTP предусматривает как аутентификацию удаленного пользователя так и зашифрованную передачу данных. Программное обеспечение удаленного доступа реализующее PPTP может использовать любой стандарт криптографического закрытия передаваемых данных. Например сервер удаленного доступа Windows использует стандарт RC4 и в зависимости от версии 40 или 128разрядные сеансовые ключи которые генерируются на основе пароля пользователя. В протоколе PPTP определено три схемы его...
33645. ПРОТОКОЛЫ РАЗРЕШЕНИЯ АДРЕСОВ ARP 35.5 KB
  ПРОТОКОЛЫ РАЗРЕШЕНИЯ АДРЕСОВ RP. Для доставки дейтаграммы в локальной сети нужно определить физический адрес узла назначения. Именно для этого существует процедура автоматического определения физических адресов. Протокол разрешения адресов ddress Resolution Protocol RP обеспечивает метод динамической трансляции между IPадресом и соответствующим физическим адресом на основе широковещательных рассылок.
33646. Атаки на протокол ARP 38 KB
  Атаки на протокол RP Протокол разрешения адресов RP. Функционально протокол RP состоит из двух частей. Одна часть протокола определяет физические адреса другая отвечает на запросы при определении физических адресов. Протокол RP работает различным образом в зависимости от того какой протокол канального уровня работает в данной сети протокол локальной сети Ethernet Token Ring FDDI с возможностью широковещательного доступа одновременно ко всем узлам сети или же протокол глобальной сети Х.
33647. ПРОТОКОЛ ICMP. ФОРМАТЫ СООБЩЕНИЙ ICMP 35 KB
  Если маршрутизатор обнаруживает ошибку он уничтожает дейтаграмму но одновременно с помощью ICMP отсылает сообщение об ошибке отправителю для принятия мер по ее устранению. 8бит тип сообщение 8 бит поле кода конкретизирует назначение сообщения 16 бит контрольная сумма. Сообщение Получатель недостижим посылается маршрутизатором если он не может доставить IPдейтаграмму по назначению. В это сообщение включается IPзаголовок отвергнутой IPдейтаграммы и ее первые 64 бита.
33648. Атаки сетевого уровня на протокол IP и его защита 119 KB
  В качестве примера можно привести известную утилиту Nmp некоторые режимы которой позволяют задать поддельные адреса отправителя пакетов. Посылка специфических пакетов где определённым образом заполнены поля заголовка отвечающие за фрагментацию может приводить к зависанию или понижению производительности узла. Исправление этих ошибок это установка пакетов обновления программного обеспечения. Большое число одинаковых фрагментированных пакетов вызывают замораживание машины на время атаки.
33649. Атаки на протокол ICMP и его защита 27.5 KB
  Атаки на протокол ICMP и его защита Поскольку протокол ICMP служит для передачи различных управляющих служебных сообщений поэтому всегда был популярной мишенью для атаки. Атака Sping Jolt Атака состоит в посылке нескольких дефрагментированных пакетов ICMP IСМР_ЕСНО больших размеров по частям. Для устранения уязвимости необходимо применить патч icmpfix который зависит от версии Windows NT и установленного пакета обновления. Атака ICMP Request Атака заключается в посылке пакета ICMP Subnet Msk ddress Request по адресу сетевого интерфейса...
33650. Протокол IPSec 43.5 KB
  Протокол IPSec Шифрование данных на сетевом уровне представлено группой протоколов IPSec основанных на современных технологиях электронной цифровой подписи и шифрования данных. Протокол IPSec включает в себя: протокол аутентификации uthentiction Heder АН который привязывает данные в составе пакета к своеобразной подписи позволяющей удостовериться как в подлинности отправителя так и в целостности принятых от него данных; протокол Encpsulted Security Pylod ESP отвечающий за шифрование содержимого отдельных пакетов и даже...
33651. Протокол ESP 42 KB
  Протокол IKE Протокол IKE обеспечивает распределение ключей и согласование протоколов между участниками обмена. Протокол IKE решает три задачи: согласование алгоритмов шифрования и характеристик ключей которые будут использоваться в защищенном сеансе; непосредственный обмен ключами в том числе возможность их частой смены; контроль выполнения всех достигнутых соглашений. Протокол IKE функционирует в два этапа: Установление защищенного соединения для процедуры обмена IKE S. Два из них основной и агрессивный относятся к первому...