98908

Применение интегрированных программных систем автоматизации математических расчетов

Курсовая

Информатика, кибернетика и программирование

Метод Симпсона. Метод прямоугольников. Для этого он вынужден изучать языки программирования и многочисленные подчас весьма тонкие капризные численные методы математических расчетов. Метод Симпсона Метод Симпсона также Ньютона-Симпсона относится к приёмам численного интегрирования.

Русский

2016-07-14

762 KB

0 чел.

Содержание

Введение…………………………………………………………………………………………......2
1 Теоретическая часть……………………………………………………………………………...3
1.1 Метод Симпсона..………………………………………………………………………………3
1.2 Метод прямоугольников………………………………………..………………………………4

2 Практическая часть...……………………………………………………………………………..7
2.1 Решение нелинейных уравнений………………………………………………………..……7
2.2 Решение систем линейных уравнений. …………………………………………...…………11
2.3 Аппроксимация функций..…………………………………………………………...………17
2.4 Вычисление определенного интеграла………………………………………………………23
2.5 Решение обыкновенных дифференциальных уравнений…………………………......……26

Заключение…………………………………………………………………………………….…..32

Список литературы......……………………………………………………………………………33

                                                                   


Введение

Математические и научно - технические расчеты являются важной сферой применения персональных компьютеров. Часто они выполняются с помощью программ, написанных на языке высокого уровня, например Бейсике или Паскале. Сегодня эту работу нередко выполняет обычный пользователь ПК. Для этого он вынужден изучать языки программирования и многочисленные, подчас весьма тонкие капризные численные методы математических расчетов. Нередко при этом из-под руки способного физика, химика или инженера выходят далёкие от совершенства программы.

Это не вполне нормальное положение может изменить к лучшему применение интегрированных программных систем автоматизации математических расчетов (Eureka, MathCAD, MatLab и др.). Здесь рассматриваются возможности и эволюция одной из таких систем - MathCAD.

Фирма MathSoft Inc.(США) выпустила первую версию системы в 1986 г. Главная отличительная особенность системы MathCAD заключается в её входном языке, который максимально приближён к естественному математическому языку, используемому как в трактатах по математике, так и вообще в научной литературе. В последнее время широкое распространение получили пакеты математических программ (или математические системы), которые можно использовать для различных вычислений и вычерчивания графиков (Mathematica, Derive, Statistica, MathCAD, MathLAB и др.). В этих системах процесс вычислений сильно автоматизирован, что позволяет экономить время и больше внимания уделять физическому смыслу получаемого результата. Выбор системы зависит от характера решаемых задач, от вкуса, от практики.


1 Теоретическая часть

1.1 Метод Симпсона

Метод Симпсона (также Ньютона-Симпсона) относится к приёмам численного интегрирования. Получила название в честь британского математика Томаса Симпсона (1710—1761).

Суть метода заключается в приближении подынтегральной функции на отрезке интерполяционным многочленом второй степени , то есть приближение графика функции на отрезке параболой. Метод Симпсона имеет порядок погрешности 4 и алгебраический порядок точности 3.

1.1.1 Формула

Формулой Симпсона называется интеграл от интерполяционного многочлена второй степени на отрезке :


где
, и  — значения функции в соответствующих точках (на концах отрезка и в его середине).

1.1.2 Погрешность

При условии, что у функции на отрезке существует четвёртая производная, погрешность , согласно найденной Джузеппе Пеано формуле, равна:

В связи с тем, что значение зачастую неизвестно, для оценки погрешности используется следующее неравенство:


1.2 Метод прямоугольников

Метод прямоугольников — метод численного интегрирования функции одной переменной, заключающийся в замене подынтегральной функции на многочлен нулевой степени, то есть константу, на каждом элементарном отрезке. Если рассмотреть график подынтегральной функции, то метод будет заключаться в приближённом вычислении площади под графиком суммированием площадей конечного числа прямоугольников, ширина которых будет определяться расстоянием между соответствующими соседними узлами интегрирования, а высота — значением подынтегральной функции в этих узлах. Алгебраический порядок точности равен 0. (Для формулы средних прямоугольников
равен 1).

Если отрезок является элементарным и не подвергается дальнейшему разбиению, значение интеграла можно найти по:

  1.  Формуле левых прямоугольников:
  2.  Формуле правых прямоугольников:
  3.  Формуле прямоугольников (средних):

1.2.1 Составные квадратурные формулы

В случае разбиения отрезка интегрирования на элементарных отрезков приведённые выше формулы применяются на каждом из этих элементарных отрезков между двумя соседними узлами. В результате, получаются составные квадратурные формулы

  1.  Для левых прямоугольников:
  2.  Для правых прямоугольников:
  3.  Для средних прямоугольников:

Формулу с вычислением значения в средней между двумя узлами точке можно применять лишь тогда, когда подынтегральная функция задана аналитически, либо
каким-нибудь иным способом, допускающим вычисление значения в произвольной точке. В задачах, где функция задана таблицей значений остаётся лишь вычислять среднее значение между интегралами, посчитанными по формулам левых и правых прямоугольников соответственно, что приводит к составной квадратурной формуле трапеций.

Поскольку составные квадратурные формулы являются ни чем иным, как суммами, входящими в определение интеграла Римана, при они сходятся к точному значению интеграла. Соответственно, с увеличением точность получаемого по приближённым формулам результата возрастает.

1.2.2 Составные формулы для равномерных сеток

Равномерную сетку можно описать следующим набором формул:

где  — шаг сетки.

Для равномерных сеток формулы прямоугольников можно записать в виде следующих формул Котеса:

  1.  Составная формула левых прямоугольников:
  2.  Составная формула правых прямоугольников:
  3.  Составная формула средних прямоугольников:

1.2.3 Погрешность

Для формул правых и левых прямоугольников погрешность составляет

Для формулы прямоугольников (средних)


Для составных формул правых и левых прямоугольников на равномерной сетке:

Для составной формулы прямоугольников:


2 Практическая часть

2.1 Решение нелинейных уравнений

Mathcad

2.1.1 Шаговый метод

Будем вычислять значение  F(x),двигаясь вправо с некоторым шагом h.

 

Построим график функции F(x):

Рисунок 2 – График функции

Построим таблицу значений «х» и таблицу значений F(x) :

2.1.2 Метод Ньютона (касательных)

Зададим диапазон изменения номера итерации и начальное приближение к корню:

Вывод таблицы приближенных решений для  итерации:


Excel

                                                           

  1.  Рассмотрим равнение:

Шаговый метод:

  1.  Левую часть за f(x)

2.1.3 Шаговый метод


Рисунок 2.1 – График функции

2.1.4 Метод половинного деления

2.1.5 Метод касательных

2.2 Решение систем линейных уравнений.

То, что слева запишем в виде матрицы, а то, что справа возьмем как столбец свободных членов:

Выполним несколько операций над матрицей «А»:

2.2.1 Метод обратной матрицы

2.2.2 Метод Крамера

Запишем матрицу А и столбец свободных членов b:

Найдем определитель матрицы:

Вычислим определители матриц, полученных заменой соответствующего столбца исходной матрицы столбцом свободных членов:

2.2.3 Метод Гаусса

Запишем матрицу А и столбец свободных членов b:

Формируем расширенную матрицу системы:

Приводим матрицу к ступенчатому виду:

Формируем вектор-столбец решения системы уравнений:


              

Excel

Запишем матрицу «А» и выполним несколько операций:

2.2.4 Метод обратной матрицы

2.2.5 Метод Крамера

Вычислим определители матриц, полученных заменой соответствующего столбца исходной матрицы столбцом свободных членов:

2.2.6 Метод Гаусса

1) Запишем матрицу А и столбец свободных членов b

2) Преобразуем матрицу так, чтобы на главной диагонали были 1

2.2.7 Метод итерации

 

Метод не работает, так как не прошла проверка на сходимость.

2.3 Аппроксимация функций

Mathcad

Функция задана векторами значений:

Количество итераций:

2.3.1 Линейная аппроксимация

Определим вектор функцию:


Вычислим параметр b:

Формула линейной функции:

Ошибка:

     

Рисунок 2.2 -  График функции

2.3.2 Аппроксимация 4-ой степени

      

 

Рисунок 2.3 - График функции

2.3.3 Параболическая аппроксимация

Рисунок 2.4 – График функции

2.3.4 Метод неопределенных коэффициентов

Рисунок 2.5 – график функции

Excel

Запишем исходные данные:

Строим график ,диапазон данных берем значения y, а так же значения проверки:

Рисунок 2.6 - Аппроксимация функции

2.4 Вычисление определенного интеграла

Mathcad

Запишем подынтегральную функцию и отрезок интегрирования:

Построим  график функции:

                                                 Рисунок 2.7  - график функции

Excel

Выводим таблицу:

 



Рисунок 2.8 – график функции

Рисунок 2.9 – Метод трапеций

Рисунок 2.10 - Метод правых прямоугольников

Рисунок 2.11 – Метод левых прямоугольников

2.5 Решение обыкновенных дифференциальных уравнений

Mathcad

2.5.1 Метод Эйлера

        Введем функцию:

 

Начальное значение:

Отрезок:

Шаг:

Количество точек:

 

Формула для вычисления таблицы:

Таблица значений:

2.5.2 Метод Рунге Кутта

Рисунок 2.12 – График решения

Excel

2.5.3 Метод Эйлера

Рисунок 2.13 – График функции

2.5.4 Метод Рунге-Кутта

Значение функции:

Рисунок 2.14  – Графики функций

Заключение

В заключение хотелось бы сказать, что при тщательном изучении обеих программ (Excel, MathCad),  может показаться, что первая более трудоемка и сложна в изучении при коротком курсе. Однако, Excel дает более подробный анализ того, или иного случая нежели MathCad, так как тот в совою очередь обеспечивает быстрый расчет благодаря удобному функционалу.

И все же, свое предпочтение  я отдаю Excel, так как считаю, что человеку, разобравшемуся, в данном ПО, не составит большого труда освоить пакет MathCad.


Список литературы

1. Мамонова Т.Е. Информационные технологии. Работа в MathCAD и MatLab: учебно-методическое пособие / Т.Е. Мамонова; Томский политехнический университет. – Томск: Изд-во Томского политехнического университета, 2011г.
2. Лапчик, М.П. М Численные методы/ М.П. Лапчик, .И. Рагулина, Е.К. Хеннер.- Москва: Издательский центр «Академия», 2009
3.
http://ru.wikipedia.org/wiki/MathCad


 

А также другие работы, которые могут Вас заинтересовать

34110. Понятие регрессии. Роль регрессии в развитии психоаналитической терапии 48 KB
  Понятие регрессии. Роль регрессии в развитии психоаналитической терапии. Процесс регрессии – как временный постоянный защитный топический ситуационный. Патологическая и нормальная регрессии их формирование в процессе развития и их значение в функционировании психического аппарата и формировании различных уровней психопатологии.
34111. Принцип психоаналитической нейтральности. Реакции аналитика на пациента: рациональные аффективные, комплиментарные, эмпатические, контрпереносные 48 KB
  Принцип психоаналитической нейтральности. В данной теме особое внимание следует уделить пониманию центрального базового значения психоаналитического понимания нейтральности. Слово НЕЙТРАЛЬНОСТЬ neutrlity и концепция ПСИХОАНАЛИТИЧЕСКОЙ НЕЙТРАЛЬНОСТИ были амбивалентными с самого момента рождения психоанализа. Приветствуемая одно время как настолько фундаментальная что принимается как данность к нейтральности тут же стали тихо относиться как мифу.
34112. Психоаналитическое понятие тревоги и ее типы 85.5 KB
  Тревога и процесс регрессии в психоаналитической ситуации. Тревога рассматривается как архаичный аффект оторвавшийся от первоначального смыслового контекста. Объективная тревога это тревога вызванная известной опасностью. Невротическая тревога вызвана неизвестной опасностью.
34113. Неспецифические аспекты психоаналитической терапии 77 KB
  В данной теме необходимо сформировать четкое представление о неспецифических формах взаимодействия аналитика и пациента. Данный раздел дает четкое представление о вспомогательных формах и методах во взаимодействии аналитика и пациента в рамках психоаналитической терапии. Если он будет это делать с неохотой аналитик может сказать что его интересуют факты. Пациента увязнувшего в неискренней похвале своих родителей можно спросить: Ваши родители действительно замечательные люди Расспрашивание для прояснения очевидности: Вместо того чтобы...
34114. Роль сновидений в психоаналитической терапии и техника работы с ними 73 KB
  Работа сновидения. Роль сновидения в работе психического аппарата. Развитие понимание сновидения и его роли в терапевтическом процессе от З. Классические подходы к пониманию сновидения его роль в общей структуре психики.
34115. Психоанализ и психоаналитическая терапия, основные принципы 67.5 KB
  Основные принципы классического психоанализа разработанного в наследие З. Основные отличия внешние – организационные и методологические основы клинического психоанализа психоаналитической терапии. Обратить особое внимание на основные принципы классического психоанализа разработанного З. Предлагаю обсудить вопрос который постоянно в той или иной форме возникает в ходе как профессиональных так и студенческих обсуждений отголоски этой дискуссии звучат и в раздающихся все чаще и чаще утверждениях о том что под брендом психоанализа скрывается...
34116. Показание и противопоказания психоаналитической терапии 62 KB
  Некоторые особенности российского пациента. Так же следует обратить особое внимание на особенности российского пациента и особенности построения терапии в зависимости от психологической конституции. Фрейд полагал что последние две силы связаны между собой и что существует некоторое соответствие внешней реальности и психологической предрасположенности самого пациента Тем самым предполагалось наличие патогенных компонентов в прошлом которые должны предопределять повышенную чувствительность по отношению к определенным обстоятельствам в...
34117. Сеттинг. Определение, взаимозависимость терапевтической задачи и сеттинга 46.5 KB
  Роль сеттинга в построение переходного пространства в рамках котрого происходит развертывание фантазий пациента и осуществляется работа с переносом и сопротивлением. Следует разобраться в ключевой роли сеттинга для формирования у пациента способности восприимать и продуцировать символическую организацию мира. Пациент лежит на кушетке или софе а психоаналитик сидит позади него оставаясь большей частью вне поля зрения пациента стараясь вмешиваться в процесс мышления пациента настолько мало насколько это возможно и не иначе как посредством...
34118. Структурные изменения, как основная цель психоанализа и психоаналитической терапии 62.5 KB
  Еще в 1894 году в работе “Невропсихозы защиты†он показывает что абсисивный симптом является компромиссом между неприемлемым сексуальным желанием защитой против удовлетворения этого желания и раскаянием или самонаказанием. Давайте попробуем понять фразу: Каждый симптом и каждая невротическая черта характера является компромиссным образованием И попробуенм в связи с этим ответить на два вопроса. Компромиссное образование является патологическим когда оно характеризуется любой комбинацией следующих черт: слишком большое ограничение...