98908

Применение интегрированных программных систем автоматизации математических расчетов

Курсовая

Информатика, кибернетика и программирование

Метод Симпсона. Метод прямоугольников. Для этого он вынужден изучать языки программирования и многочисленные подчас весьма тонкие капризные численные методы математических расчетов. Метод Симпсона Метод Симпсона также Ньютона-Симпсона относится к приёмам численного интегрирования.

Русский

2016-07-14

762 KB

0 чел.

Содержание

Введение…………………………………………………………………………………………......2
1 Теоретическая часть……………………………………………………………………………...3
1.1 Метод Симпсона..………………………………………………………………………………3
1.2 Метод прямоугольников………………………………………..………………………………4

2 Практическая часть...……………………………………………………………………………..7
2.1 Решение нелинейных уравнений………………………………………………………..……7
2.2 Решение систем линейных уравнений. …………………………………………...…………11
2.3 Аппроксимация функций..…………………………………………………………...………17
2.4 Вычисление определенного интеграла………………………………………………………23
2.5 Решение обыкновенных дифференциальных уравнений…………………………......……26

Заключение…………………………………………………………………………………….…..32

Список литературы......……………………………………………………………………………33

                                                                   


Введение

Математические и научно - технические расчеты являются важной сферой применения персональных компьютеров. Часто они выполняются с помощью программ, написанных на языке высокого уровня, например Бейсике или Паскале. Сегодня эту работу нередко выполняет обычный пользователь ПК. Для этого он вынужден изучать языки программирования и многочисленные, подчас весьма тонкие капризные численные методы математических расчетов. Нередко при этом из-под руки способного физика, химика или инженера выходят далёкие от совершенства программы.

Это не вполне нормальное положение может изменить к лучшему применение интегрированных программных систем автоматизации математических расчетов (Eureka, MathCAD, MatLab и др.). Здесь рассматриваются возможности и эволюция одной из таких систем - MathCAD.

Фирма MathSoft Inc.(США) выпустила первую версию системы в 1986 г. Главная отличительная особенность системы MathCAD заключается в её входном языке, который максимально приближён к естественному математическому языку, используемому как в трактатах по математике, так и вообще в научной литературе. В последнее время широкое распространение получили пакеты математических программ (или математические системы), которые можно использовать для различных вычислений и вычерчивания графиков (Mathematica, Derive, Statistica, MathCAD, MathLAB и др.). В этих системах процесс вычислений сильно автоматизирован, что позволяет экономить время и больше внимания уделять физическому смыслу получаемого результата. Выбор системы зависит от характера решаемых задач, от вкуса, от практики.


1 Теоретическая часть

1.1 Метод Симпсона

Метод Симпсона (также Ньютона-Симпсона) относится к приёмам численного интегрирования. Получила название в честь британского математика Томаса Симпсона (1710—1761).

Суть метода заключается в приближении подынтегральной функции на отрезке интерполяционным многочленом второй степени , то есть приближение графика функции на отрезке параболой. Метод Симпсона имеет порядок погрешности 4 и алгебраический порядок точности 3.

1.1.1 Формула

Формулой Симпсона называется интеграл от интерполяционного многочлена второй степени на отрезке :


где
, и  — значения функции в соответствующих точках (на концах отрезка и в его середине).

1.1.2 Погрешность

При условии, что у функции на отрезке существует четвёртая производная, погрешность , согласно найденной Джузеппе Пеано формуле, равна:

В связи с тем, что значение зачастую неизвестно, для оценки погрешности используется следующее неравенство:


1.2 Метод прямоугольников

Метод прямоугольников — метод численного интегрирования функции одной переменной, заключающийся в замене подынтегральной функции на многочлен нулевой степени, то есть константу, на каждом элементарном отрезке. Если рассмотреть график подынтегральной функции, то метод будет заключаться в приближённом вычислении площади под графиком суммированием площадей конечного числа прямоугольников, ширина которых будет определяться расстоянием между соответствующими соседними узлами интегрирования, а высота — значением подынтегральной функции в этих узлах. Алгебраический порядок точности равен 0. (Для формулы средних прямоугольников
равен 1).

Если отрезок является элементарным и не подвергается дальнейшему разбиению, значение интеграла можно найти по:

  1.  Формуле левых прямоугольников:
  2.  Формуле правых прямоугольников:
  3.  Формуле прямоугольников (средних):

1.2.1 Составные квадратурные формулы

В случае разбиения отрезка интегрирования на элементарных отрезков приведённые выше формулы применяются на каждом из этих элементарных отрезков между двумя соседними узлами. В результате, получаются составные квадратурные формулы

  1.  Для левых прямоугольников:
  2.  Для правых прямоугольников:
  3.  Для средних прямоугольников:

Формулу с вычислением значения в средней между двумя узлами точке можно применять лишь тогда, когда подынтегральная функция задана аналитически, либо
каким-нибудь иным способом, допускающим вычисление значения в произвольной точке. В задачах, где функция задана таблицей значений остаётся лишь вычислять среднее значение между интегралами, посчитанными по формулам левых и правых прямоугольников соответственно, что приводит к составной квадратурной формуле трапеций.

Поскольку составные квадратурные формулы являются ни чем иным, как суммами, входящими в определение интеграла Римана, при они сходятся к точному значению интеграла. Соответственно, с увеличением точность получаемого по приближённым формулам результата возрастает.

1.2.2 Составные формулы для равномерных сеток

Равномерную сетку можно описать следующим набором формул:

где  — шаг сетки.

Для равномерных сеток формулы прямоугольников можно записать в виде следующих формул Котеса:

  1.  Составная формула левых прямоугольников:
  2.  Составная формула правых прямоугольников:
  3.  Составная формула средних прямоугольников:

1.2.3 Погрешность

Для формул правых и левых прямоугольников погрешность составляет

Для формулы прямоугольников (средних)


Для составных формул правых и левых прямоугольников на равномерной сетке:

Для составной формулы прямоугольников:


2 Практическая часть

2.1 Решение нелинейных уравнений

Mathcad

2.1.1 Шаговый метод

Будем вычислять значение  F(x),двигаясь вправо с некоторым шагом h.

 

Построим график функции F(x):

Рисунок 2 – График функции

Построим таблицу значений «х» и таблицу значений F(x) :

2.1.2 Метод Ньютона (касательных)

Зададим диапазон изменения номера итерации и начальное приближение к корню:

Вывод таблицы приближенных решений для  итерации:


Excel

                                                           

  1.  Рассмотрим равнение:

Шаговый метод:

  1.  Левую часть за f(x)

2.1.3 Шаговый метод


Рисунок 2.1 – График функции

2.1.4 Метод половинного деления

2.1.5 Метод касательных

2.2 Решение систем линейных уравнений.

То, что слева запишем в виде матрицы, а то, что справа возьмем как столбец свободных членов:

Выполним несколько операций над матрицей «А»:

2.2.1 Метод обратной матрицы

2.2.2 Метод Крамера

Запишем матрицу А и столбец свободных членов b:

Найдем определитель матрицы:

Вычислим определители матриц, полученных заменой соответствующего столбца исходной матрицы столбцом свободных членов:

2.2.3 Метод Гаусса

Запишем матрицу А и столбец свободных членов b:

Формируем расширенную матрицу системы:

Приводим матрицу к ступенчатому виду:

Формируем вектор-столбец решения системы уравнений:


              

Excel

Запишем матрицу «А» и выполним несколько операций:

2.2.4 Метод обратной матрицы

2.2.5 Метод Крамера

Вычислим определители матриц, полученных заменой соответствующего столбца исходной матрицы столбцом свободных членов:

2.2.6 Метод Гаусса

1) Запишем матрицу А и столбец свободных членов b

2) Преобразуем матрицу так, чтобы на главной диагонали были 1

2.2.7 Метод итерации

 

Метод не работает, так как не прошла проверка на сходимость.

2.3 Аппроксимация функций

Mathcad

Функция задана векторами значений:

Количество итераций:

2.3.1 Линейная аппроксимация

Определим вектор функцию:


Вычислим параметр b:

Формула линейной функции:

Ошибка:

     

Рисунок 2.2 -  График функции

2.3.2 Аппроксимация 4-ой степени

      

 

Рисунок 2.3 - График функции

2.3.3 Параболическая аппроксимация

Рисунок 2.4 – График функции

2.3.4 Метод неопределенных коэффициентов

Рисунок 2.5 – график функции

Excel

Запишем исходные данные:

Строим график ,диапазон данных берем значения y, а так же значения проверки:

Рисунок 2.6 - Аппроксимация функции

2.4 Вычисление определенного интеграла

Mathcad

Запишем подынтегральную функцию и отрезок интегрирования:

Построим  график функции:

                                                 Рисунок 2.7  - график функции

Excel

Выводим таблицу:

 



Рисунок 2.8 – график функции

Рисунок 2.9 – Метод трапеций

Рисунок 2.10 - Метод правых прямоугольников

Рисунок 2.11 – Метод левых прямоугольников

2.5 Решение обыкновенных дифференциальных уравнений

Mathcad

2.5.1 Метод Эйлера

        Введем функцию:

 

Начальное значение:

Отрезок:

Шаг:

Количество точек:

 

Формула для вычисления таблицы:

Таблица значений:

2.5.2 Метод Рунге Кутта

Рисунок 2.12 – График решения

Excel

2.5.3 Метод Эйлера

Рисунок 2.13 – График функции

2.5.4 Метод Рунге-Кутта

Значение функции:

Рисунок 2.14  – Графики функций

Заключение

В заключение хотелось бы сказать, что при тщательном изучении обеих программ (Excel, MathCad),  может показаться, что первая более трудоемка и сложна в изучении при коротком курсе. Однако, Excel дает более подробный анализ того, или иного случая нежели MathCad, так как тот в совою очередь обеспечивает быстрый расчет благодаря удобному функционалу.

И все же, свое предпочтение  я отдаю Excel, так как считаю, что человеку, разобравшемуся, в данном ПО, не составит большого труда освоить пакет MathCad.


Список литературы

1. Мамонова Т.Е. Информационные технологии. Работа в MathCAD и MatLab: учебно-методическое пособие / Т.Е. Мамонова; Томский политехнический университет. – Томск: Изд-во Томского политехнического университета, 2011г.
2. Лапчик, М.П. М Численные методы/ М.П. Лапчик, .И. Рагулина, Е.К. Хеннер.- Москва: Издательский центр «Академия», 2009
3.
http://ru.wikipedia.org/wiki/MathCad


 

А также другие работы, которые могут Вас заинтересовать

20214. ИССЛЕДОВАНИЕ ЭЛЕКТРИЧЕСКИХ ХАРАКТЕРИСТИК КАНАЛА ТОНАЛЬНОЙ ЧАСТОТЫ 90.5 KB
  Исследование основных электрических характеристик канала тональной частоты ТЧ. Изучение характеристик канала ТЧ и методов их измерения. Измерение характеристик канала ТЧ.
20215. Система передачи ИКМ – 30 61.5 KB
  В системе ИКМ – 30 для каждого канала ТЧ организуются по два специально выделенных канала СК1 и СК2 для передачи сигналов взаимодействия и управления с УВ сигналы. Циклы и сверхциклы ИКМ – 30 мы уже рассматривали ранее. В настоящее время выпускается система ИКМ–30–4 четвертого поколения с сервисным оборудованием мирового уровня.
20216. Синхронная цифровая иерархия 47.5 KB
  Такой путь признан мировым сообществом в качестве оптимального и для его реализации разработана технология СИНХРОННОЙ ЦИФРОВОЙ ИЕРАРХИИ СЦИ – Synchronous Digital Hierarchy SDH.707 МККТТ приводятся его следующие преимущества: упрощённая техника объединения разделения цифровых потоков; прямой доступ к компонентам без необходимости расшивки всего потока; расширение возможностей эксплуатации в сети и технического обслуживания; лёгкий переход ко всё более высоким скоростям передачи; возможна передача как сигналов SDH систем так и PDH...
20217. Среды передачи Секций мультиплексных Волоконно – оптическая сеть регенерационных Физическая среда 69 KB
  Сеть каналов – слой обслуживающий пользователей содержит электронные АТС обеспечивающие подключение терминалов пользователей к тем или иным комплектам оконечных АТС системы SDH. Горизонтальное деление структуры сети SDH дополняется вертикальным – на подсети например международные национальные межзоновые соединённые друг с другом соединительными линиями. На первом этапе пока SDH системы не являются основными в задачу создаваемых SDH сетей входит передача потоков образованных РDH системами. Для адаптации РDH потоков для компенсации...
20218. ОПРЕДЕЛЕНИЕ ОПТИМАЛЬНОГО БЫСТРОДЕЙСТВИЯ ПРОЦЕССОРА 58.88 KB
  Исследование способов организации вычислительного процесса в цифровых управляющих системах и определение быстродействия процессора ЭВМ. В ходе выполнения работы студент знакомится с основными способами организации вычислительного процесса для различных режимов работы
20219. Обобщённая структурная схема ЦСП 44.5 KB
  С выхода АЦП получаемый ИКМ сигнал объединяется с необходимыми сигналами сигнализации сигналами синхронизации СС дискретной информации ДИ и сигналами управления и взаимодействия СУВ. потеря синхронизации. Поэтому вопросам синхронизации в ЦСП уделяют особое внимание. Устройство временного разделения ВР – демультиплексор разделяет высокоскоростной поток на низкоскоростные компоненты из которых в блоке выделения служебных сигналов ВСС выделяются сигналы синхронизации управления и взаимодействия.
20220. Формирование структуры цикла передачи ЦСП 46 KB
  Чем выше по иерархии ступень мультиплексирования тем больше надо дополнительных позиций во фрейме поэтому скорость передачи групповых сигналов не является простой суммой канальных 64 кб с скоростей. Итак в цикле фрейме должны быть позиции для сигналов синхронизации информационных для передачи сигналов управления контроля и возможно других дополнительных сигналов. Обычно их формируют в виде сосредоточенной группы сигналов в определённой позиции слоте фрейма цикла. сигналов управления и взаимодействия СУВ должно быть таким чтобы...
20221. Мистецтво як соціальний феномен 72 KB
  Позиції філософів різних часів відносно предмету естетики. Важливість мистецтва як феномена культури та як особливої форми духовно-практичної діяльності людини.