98908

Применение интегрированных программных систем автоматизации математических расчетов

Курсовая

Информатика, кибернетика и программирование

Метод Симпсона. Метод прямоугольников. Для этого он вынужден изучать языки программирования и многочисленные подчас весьма тонкие капризные численные методы математических расчетов. Метод Симпсона Метод Симпсона также Ньютона-Симпсона относится к приёмам численного интегрирования.

Русский

2016-07-14

762 KB

0 чел.

Содержание

Введение…………………………………………………………………………………………......2
1 Теоретическая часть……………………………………………………………………………...3
1.1 Метод Симпсона..………………………………………………………………………………3
1.2 Метод прямоугольников………………………………………..………………………………4

2 Практическая часть...……………………………………………………………………………..7
2.1 Решение нелинейных уравнений………………………………………………………..……7
2.2 Решение систем линейных уравнений. …………………………………………...…………11
2.3 Аппроксимация функций..…………………………………………………………...………17
2.4 Вычисление определенного интеграла………………………………………………………23
2.5 Решение обыкновенных дифференциальных уравнений…………………………......……26

Заключение…………………………………………………………………………………….…..32

Список литературы......……………………………………………………………………………33

                                                                   


Введение

Математические и научно - технические расчеты являются важной сферой применения персональных компьютеров. Часто они выполняются с помощью программ, написанных на языке высокого уровня, например Бейсике или Паскале. Сегодня эту работу нередко выполняет обычный пользователь ПК. Для этого он вынужден изучать языки программирования и многочисленные, подчас весьма тонкие капризные численные методы математических расчетов. Нередко при этом из-под руки способного физика, химика или инженера выходят далёкие от совершенства программы.

Это не вполне нормальное положение может изменить к лучшему применение интегрированных программных систем автоматизации математических расчетов (Eureka, MathCAD, MatLab и др.). Здесь рассматриваются возможности и эволюция одной из таких систем - MathCAD.

Фирма MathSoft Inc.(США) выпустила первую версию системы в 1986 г. Главная отличительная особенность системы MathCAD заключается в её входном языке, который максимально приближён к естественному математическому языку, используемому как в трактатах по математике, так и вообще в научной литературе. В последнее время широкое распространение получили пакеты математических программ (или математические системы), которые можно использовать для различных вычислений и вычерчивания графиков (Mathematica, Derive, Statistica, MathCAD, MathLAB и др.). В этих системах процесс вычислений сильно автоматизирован, что позволяет экономить время и больше внимания уделять физическому смыслу получаемого результата. Выбор системы зависит от характера решаемых задач, от вкуса, от практики.


1 Теоретическая часть

1.1 Метод Симпсона

Метод Симпсона (также Ньютона-Симпсона) относится к приёмам численного интегрирования. Получила название в честь британского математика Томаса Симпсона (1710—1761).

Суть метода заключается в приближении подынтегральной функции на отрезке интерполяционным многочленом второй степени , то есть приближение графика функции на отрезке параболой. Метод Симпсона имеет порядок погрешности 4 и алгебраический порядок точности 3.

1.1.1 Формула

Формулой Симпсона называется интеграл от интерполяционного многочлена второй степени на отрезке :


где
, и  — значения функции в соответствующих точках (на концах отрезка и в его середине).

1.1.2 Погрешность

При условии, что у функции на отрезке существует четвёртая производная, погрешность , согласно найденной Джузеппе Пеано формуле, равна:

В связи с тем, что значение зачастую неизвестно, для оценки погрешности используется следующее неравенство:


1.2 Метод прямоугольников

Метод прямоугольников — метод численного интегрирования функции одной переменной, заключающийся в замене подынтегральной функции на многочлен нулевой степени, то есть константу, на каждом элементарном отрезке. Если рассмотреть график подынтегральной функции, то метод будет заключаться в приближённом вычислении площади под графиком суммированием площадей конечного числа прямоугольников, ширина которых будет определяться расстоянием между соответствующими соседними узлами интегрирования, а высота — значением подынтегральной функции в этих узлах. Алгебраический порядок точности равен 0. (Для формулы средних прямоугольников
равен 1).

Если отрезок является элементарным и не подвергается дальнейшему разбиению, значение интеграла можно найти по:

  1.  Формуле левых прямоугольников:
  2.  Формуле правых прямоугольников:
  3.  Формуле прямоугольников (средних):

1.2.1 Составные квадратурные формулы

В случае разбиения отрезка интегрирования на элементарных отрезков приведённые выше формулы применяются на каждом из этих элементарных отрезков между двумя соседними узлами. В результате, получаются составные квадратурные формулы

  1.  Для левых прямоугольников:
  2.  Для правых прямоугольников:
  3.  Для средних прямоугольников:

Формулу с вычислением значения в средней между двумя узлами точке можно применять лишь тогда, когда подынтегральная функция задана аналитически, либо
каким-нибудь иным способом, допускающим вычисление значения в произвольной точке. В задачах, где функция задана таблицей значений остаётся лишь вычислять среднее значение между интегралами, посчитанными по формулам левых и правых прямоугольников соответственно, что приводит к составной квадратурной формуле трапеций.

Поскольку составные квадратурные формулы являются ни чем иным, как суммами, входящими в определение интеграла Римана, при они сходятся к точному значению интеграла. Соответственно, с увеличением точность получаемого по приближённым формулам результата возрастает.

1.2.2 Составные формулы для равномерных сеток

Равномерную сетку можно описать следующим набором формул:

где  — шаг сетки.

Для равномерных сеток формулы прямоугольников можно записать в виде следующих формул Котеса:

  1.  Составная формула левых прямоугольников:
  2.  Составная формула правых прямоугольников:
  3.  Составная формула средних прямоугольников:

1.2.3 Погрешность

Для формул правых и левых прямоугольников погрешность составляет

Для формулы прямоугольников (средних)


Для составных формул правых и левых прямоугольников на равномерной сетке:

Для составной формулы прямоугольников:


2 Практическая часть

2.1 Решение нелинейных уравнений

Mathcad

2.1.1 Шаговый метод

Будем вычислять значение  F(x),двигаясь вправо с некоторым шагом h.

 

Построим график функции F(x):

Рисунок 2 – График функции

Построим таблицу значений «х» и таблицу значений F(x) :

2.1.2 Метод Ньютона (касательных)

Зададим диапазон изменения номера итерации и начальное приближение к корню:

Вывод таблицы приближенных решений для  итерации:


Excel

                                                           

  1.  Рассмотрим равнение:

Шаговый метод:

  1.  Левую часть за f(x)

2.1.3 Шаговый метод


Рисунок 2.1 – График функции

2.1.4 Метод половинного деления

2.1.5 Метод касательных

2.2 Решение систем линейных уравнений.

То, что слева запишем в виде матрицы, а то, что справа возьмем как столбец свободных членов:

Выполним несколько операций над матрицей «А»:

2.2.1 Метод обратной матрицы

2.2.2 Метод Крамера

Запишем матрицу А и столбец свободных членов b:

Найдем определитель матрицы:

Вычислим определители матриц, полученных заменой соответствующего столбца исходной матрицы столбцом свободных членов:

2.2.3 Метод Гаусса

Запишем матрицу А и столбец свободных членов b:

Формируем расширенную матрицу системы:

Приводим матрицу к ступенчатому виду:

Формируем вектор-столбец решения системы уравнений:


              

Excel

Запишем матрицу «А» и выполним несколько операций:

2.2.4 Метод обратной матрицы

2.2.5 Метод Крамера

Вычислим определители матриц, полученных заменой соответствующего столбца исходной матрицы столбцом свободных членов:

2.2.6 Метод Гаусса

1) Запишем матрицу А и столбец свободных членов b

2) Преобразуем матрицу так, чтобы на главной диагонали были 1

2.2.7 Метод итерации

 

Метод не работает, так как не прошла проверка на сходимость.

2.3 Аппроксимация функций

Mathcad

Функция задана векторами значений:

Количество итераций:

2.3.1 Линейная аппроксимация

Определим вектор функцию:


Вычислим параметр b:

Формула линейной функции:

Ошибка:

     

Рисунок 2.2 -  График функции

2.3.2 Аппроксимация 4-ой степени

      

 

Рисунок 2.3 - График функции

2.3.3 Параболическая аппроксимация

Рисунок 2.4 – График функции

2.3.4 Метод неопределенных коэффициентов

Рисунок 2.5 – график функции

Excel

Запишем исходные данные:

Строим график ,диапазон данных берем значения y, а так же значения проверки:

Рисунок 2.6 - Аппроксимация функции

2.4 Вычисление определенного интеграла

Mathcad

Запишем подынтегральную функцию и отрезок интегрирования:

Построим  график функции:

                                                 Рисунок 2.7  - график функции

Excel

Выводим таблицу:

 



Рисунок 2.8 – график функции

Рисунок 2.9 – Метод трапеций

Рисунок 2.10 - Метод правых прямоугольников

Рисунок 2.11 – Метод левых прямоугольников

2.5 Решение обыкновенных дифференциальных уравнений

Mathcad

2.5.1 Метод Эйлера

        Введем функцию:

 

Начальное значение:

Отрезок:

Шаг:

Количество точек:

 

Формула для вычисления таблицы:

Таблица значений:

2.5.2 Метод Рунге Кутта

Рисунок 2.12 – График решения

Excel

2.5.3 Метод Эйлера

Рисунок 2.13 – График функции

2.5.4 Метод Рунге-Кутта

Значение функции:

Рисунок 2.14  – Графики функций

Заключение

В заключение хотелось бы сказать, что при тщательном изучении обеих программ (Excel, MathCad),  может показаться, что первая более трудоемка и сложна в изучении при коротком курсе. Однако, Excel дает более подробный анализ того, или иного случая нежели MathCad, так как тот в совою очередь обеспечивает быстрый расчет благодаря удобному функционалу.

И все же, свое предпочтение  я отдаю Excel, так как считаю, что человеку, разобравшемуся, в данном ПО, не составит большого труда освоить пакет MathCad.


Список литературы

1. Мамонова Т.Е. Информационные технологии. Работа в MathCAD и MatLab: учебно-методическое пособие / Т.Е. Мамонова; Томский политехнический университет. – Томск: Изд-во Томского политехнического университета, 2011г.
2. Лапчик, М.П. М Численные методы/ М.П. Лапчик, .И. Рагулина, Е.К. Хеннер.- Москва: Издательский центр «Академия», 2009
3.
http://ru.wikipedia.org/wiki/MathCad


 

А также другие работы, которые могут Вас заинтересовать

41973. ПОБУДОВА ОПТИМАЛЬНОГО НЕРІВНОМІРНОГО КОДУ ЗА МЕТОДИКОЮ ХАФФМАНА 53.47 KB
  0 проводиться перехід до побудови дерева коду за допомогою проміжних вузлів. 161 00074 3 В 893 00412 21 Х 156 00072 11 Л 745 00344 29 Ю 148 00068 16 Р 699 00322 22 Ц 126 00058 №п п Символ ni pi №п п Символ ni pi 12 М 656 00303 25 Щ 108 00050 10 К 574 00265 24 Ш 60 00028 5 Д 507 00234 28 Э 59 00027 26 Ы 467 00215 20 Ф 30 00014 19 У 399 00184 8 З 4 00002 Дерево коду за методикою Хаффмана: Визначаємо ентропію джерела за формулою: Визначаємо максимальний ступінь стиснення інформації: Середня довжина кодової комбінації:...
41976. Изучение методики процедурного программирования в СУБД 903.17 KB
  Изучение управленческих конструкций IFEndIF и IIF. Изучение конструкций построения циклов For EndFOR. Изучение управленческих конструкций IFEndIF и IIF.
41977. Численное дифференцирование и интегрирование 1.37 MB
  Вычислить интеграл по формуле прямоугольников используя для оценки точности двойной просчет при n1= 8 и n2=10. По формуле левых прямоугольников получим I1=h0126.72062243; По формуле правых прямоугольников находим I2=h 6.15576821; Работа 3 Задание: 1 Вычислить интеграл по формуле трапеций с тремя десятичными знаками.
41978. Исследование объемов передаваемой информации в каналах волоконно-оптических систем связи 15.28 KB
  Целью работы является исследование энергетического потенциала и пропускной способности волоконнооптического канала системы с технологией DWDM. Для предложенной технологии задан набор исходных параметров который включает в себя частотные пространственноэнергетические и технологические параметры системы обозначены зеленым цветом. Задание к лабораторной работе Для предложенной технологии волоконнооптической системы согласно номеру рабочего места исследовать характеристики системы по всем этапам расчета при заданном наборе исходных...