9903

Симплекс-метод решения задач ЛП

Реферат

Информатика, кибернетика и программирование

Симплекс-метод решения задач ЛП Симплекс-метод предложен Дж. Данцигом в 1947 г. непосредственно применяется к общей задаче ЛП в канонической форме: Z = CTX min, при ограничениях X0, AX = B, B > 0, Любое неотрицательное решение...

Русский

2013-03-18

86.5 KB

20 чел.

Симплекс-метод решения задач ЛП

Симплекс-метод предложен Дж. Данцигом в 1947 г. непосредственно применяется к общей задаче ЛП в канонической форме:

Z = CTX  min,

при ограничениях

X  0, AX = B, B > 0,

Любое неотрицательное решение системы AX=B называется допустимым решением

Система AX=B может быть решена, если n-m неизвестных приравнять к нулю и разрешить ее относительно оставшихся

Если полученное решение единственно, то оно называется базисным решением

Если базисное решение допустимо, то оно называется базисным допустимым решением

Переменные, равные нулю в базисном решении, называются небазисными переменными. Остальные называются базисными и образуют базис.

Утверждение 2.1. Если ограничения имеют допустимое решение, то они имеют и базисное решение.

Утверждение 2.2. Допустимая область является выпуклым множеством.

Утверждение 2.3.  Базисные  допустимые  решения  соответствуют вершинам допустимого множества.

Утверждение 2.4. Если целевая функция имеет конечный минимум, то по крайней мере одно оптимальное решение является базисным.

Суммируя эти утверждения, можно сказать, что при поиске оптимального решения в допустимой области задачи ЛП можно ограничиться перебором базисных допустимых решений.

Общая схема симплекс-метода

Z = CTX  min,

X  0, AX = B, B > 0,

А = ER

E - единичная матрица, размерности m,

R - матрица-остаток

c1, c2, ... , cn,   x1, x2, ..., xm 

, > 0   

x1, x2,..., xm - базисные переменные

xm+1, xm+2,..., xn - небазисные

Симплекс-метод обеспечивает систематическую процедуру такой замены одного допустимого базисного решения на другое, при которой значение целевой функции уменьшается.

1. Найти переменную для включения в базис.

xm+1, xm+2, ..., xn - небазисные

< 0  ( xs   Z )

0    0 i   Z не может быть уменьшено решение найдено

2. Найти переменную для исключения из базиса. 

Пусть > 0.

Пока xs = 0 ограничение имеет вид: xi = b .

xs > 0    ограничение принимает вид: xi + a'isxs = b .

xi 0  max xs= b /a'is (или xi, станет отрицательным)

Если a'is < 0, то xs  xi, т.е. xi 0 всегда.

Рассматривая все i = 1, ..., m, имеем

   xs = min(b /a'is).

Пусть xs = xr  xr = 0, xs = b /a'rs

Другие базисные переменные останутся положительными (неотрицательными).

Элемент a'rs - ведущий элемент, строка r - ведущая строка, столбец s - ведущий столбец.


3. Записать задачу в новой форме.

Переменная xs стала базисной.  

Новый базис имеет вид: x1, x2, ..., xr-1, xs, xr+1, ..., xm

а. Коэффициент при xs в ведущей строке надо сделать равным единице (ведущую строку разделить на a'rs).

б. Необходимо исключить xs из других ограничений (из i-й строки, имеющей коэффициент a'is при xs вычесть ведущую строку (с коэффициентом 1 при xs) умноженную на a'is , i=1, ..., m, ir).

в. Преобразовать целевую функцию (коэффициент c's<0 при xs), вычитая из нее новую ведущую строку, умноженную на c's.

Построив новую задачу (эквивалентную исходной), необходимо вернуться к шагу 1.

Если все коэффициенты целевой функции неотрицательны, то задача решена.

Если при этом некоторые коэффициенты равны нулю, то имеется более, чем одно, оптимальное решение.


Порождение начального допустимого базиса

Пусть исходная задача имеет вид:

z = c1x1 + c2x2 + ... + cnxn  min

при ограничениях:

xi  0, i = 1, ..., n,

В первые m1 ограничений ввести дополнительные переменные xn+1, . . . , с коэффициентом -1.

В последние m3 ограничений ввести дополнительные переменные с коэффициентом +1.

В первые m1+m2 ограничений ввести искусственные переменные с коэффициентом +1.

Искусственные переменные и последние m3 дополнительные переменные образуют начальное допустимое базисное решение, координаты которого совпадают с правыми частями ограничений.

В целевую функцию Z дополнительные переменные входят с нулевым коэффициентом, а искусственные с коэффициентом, равным "очень большому" числу М.

Двойственность в линейном программировании

Прямая задача:

Сколько изделий и какой конструкции xj (j = 1, …, n) необходимо произвести, чтобы при заданных стоимостях                    cj (j = 1, …, n) единицы продукции и размерах имеющихся ресурсов bi (i = 1, …, m) максимизировать выпуск продукции в стоимостном выражении?

z = c1x1 + c2x2 + … + cnxn  max

xj  0, j = 1, …, n

Двойственная задача:

Какова должна быть цена yi единицы каждого из ресурсов, чтобы при заданных количествах ресурсов bi и величинах стоимости продукции cj минимизировать общую стоимость затрат?

f = b1y1 + b2y2  + … + bmym  min

yi  0, i = 1, …, m,


  

Пары двойственных задач

Прямая задача:                    Двойственная задача:

                 

              

                 

               


Основные теоремы двойственности

(для задач вида 3)

Теорема 1. Двойственная задача с двойственной есть исходная задача.

Теорема 2. Значение функции Z, соответствующее любому допустимому решению прямой задачи, не меньше значения функции f, соответствующего допустимому решению двойственной задачи.

Теорема 3. Если исходная задача имеет конечной решение z=zmin, то и двойственная задача имеет конечное решение f=fmax, причем zmin=fmax. При этом вектор-решение двойственной задачи может быть определен из симплекс-таблицы последней итерации исходной задачи.

Теорема 4. Если двойственная задача имеет конечное решение f=fmax, то исходная задача имеет конечное решение z=zmin, причем fmax=zmin. При этом вектор-решение исходной задачи может быть определен из симплекс-таблицы последней итерации двойственной задачи.


Использование двойственности при решении задач ЛП

Теория двойственности позволила усовершенствовать симплекс-метод и создать улучшенный (или исправленный) симплекс-метод, который позволяет получать сразу решение и исходной и двойственной задач. Поэтому можно выбирать, решать ли задачу в том виде, в котором она поставлена, или решать двойственную задачу. Так как объем вычислений в задаче ЛП связан скорее с количеством ограничений, чем с количеством переменных, то можно порекомендовать переходить к двойственной задаче в случае, когда ограничений больше, чем переменных.

Теория двойственности позволяет также проводить анализ устойчивости решения при изменении коэффициентов cj и bj, то есть определять границы изменения этих коэффициентов при изменении условий (например, стоимости, запасов ресурсов и т.п.), то есть заранее знать, изменится или нет оптимальное решение, нужен ли дополнительный анализ, понадобится ли еще раз принимать решение.

Теория двойственности создана Дж. Фон Нейманом и Л.В. Канторовичем.


Транспортная задача ЛП

Имеется m пунктов производства с объемами производства ai, i=1,..., m и n пунктов потребления с объемами потребления bj, j=1,..., n, cij - стоимость транспортировки одного изделия (единицы продукции) из пункта производства i в пункт потребления j. Задача заключается в планировании перевозок от поставщиков к потребителям, минимизирующих стоимость транспортировки.

xij - объем планируемой перевозки продукции от поставщика i к потребителю j

z = c11x11+ c12x12+ . . . + cmnx1  min,

x11 + x12 + . . . + x1n                        = a1,

                               x21 + x22 + . . . + x2n                                = a2,

.   .         .       .         .        .       .     .          .

                                                         xm1 + xm2 + ... + xmn     = am,

x11                           + x21                             + xm1                                 = b1,

     x12                             + x22                               + xm2                       = b2,

.         .         .        .         .          .           .            .            .

             x1n                                       + x2n                             + xmn      = bn,

xij  0, i = 1, . . . , m,  j = 1, . . . , n,


xij  0, i = 1, . . . , m,  j = 1, . . . , n,

Если в транспортной задаче выполняется условие

   

то она называется задачей закрытого типа. Транспортная задача закрытого типа всегда имеет решение.

Если в транспортной задаче суммарные запасы не совпадают с суммарными потребностями, то есть

                         

то она называется задачей открытого типа.

Транспортная задача открытого типа решается приведением к задаче закрытого типа, для чего вводится фиктивный поставщик или фиктивный потребитель. Если суммарные потребности превышают суммарные запасы, то вводятся фиктивный поставщик с объемом производства (запасов)

                       .

Если суммарные запасы превышают суммарные потребности, то вводится фиктивный потребитель с потребностью

                       

Стоимость перевозки единицы продукции до фиктивного потребителя и от фиктивного поставщика полагается равной нулю, так как груз в обоих случаях не перевозится. Фиктивному потребителю будет направлен груз от наименее выгодного поставщика груз, а продукция фиктивного поставщика будет направлена к наименее выгодному потребителю.

Если после решения задачи оказывается, что некоторый потребитель должен получить груз от фиктивного поставщика, то это означает, что потребитель данного объема продукции не получит и его спрос будет удовлетворен не полностью, аналогично -  для фиктивного потребителя.

Матрица планирования:           

Потреб                 ности

Поставщики

b1

b2

-

bn

а1

c11

c12

-

c1n

а2

аm

Cm1

Cm2

-

Cmn

Решение состоит из двух этапов: первый - построение первоначального опорного плана - обычно выполняется методом минимальной стоимости, второй - проверка плана на оптимальность и переход к новому опорному плану (наиболее распространенный метод - метод потенциалов).


Задача о назначениях

Имеется n работ (заданий) T1, T2, …, Tn и n человек M1, M2, … , Mn, каждый из которых способен выполнить любую работу. В силу различной квалификации на выполнение этих заданий им требуется различное время. Если cij - время, затрачиваемое i-м человеком на j-е задание, то как следует распределить людей по заданиям, чтобы минимизировать время выполнения?

Пусть xij - время участия i-го человека в выполнении j-го задания. Все xij  0.

Так как каждый человек должен быть задействован, a каждое задание полностью выполнено, то xij, i = 1, . . . , n,  j = 1, . . . , m,  должны удовлетворять следующим ограничениям:

x11 + x12 + . .. + x1n                                       = 1

                                   x21 + x22 + ...+ x2n                            = 1

. . . . . . . .   . . . .

                                                                    xn1 + xn2 + . . . + xnn   = 1

x11                             + x21      . . .              + xn1                             = 1

        x12                           + x22    . . .         + xn1                             = 1

. . . . . . . . . . .

                          x1n                          + x2n      . . .                 + xnn  = 1

z = c11x11+c12x12+ ... +cnnxnn  min



 

А также другие работы, которые могут Вас заинтересовать

45388. Публичная политическая власть как признак государства. Понятие и свойства, легитимность легальность 47.59 KB
  юридический прецедент как источник права Юридический прецедент судебная практика более распространенный в современном мире источник права чем правовой обычай. Иначе говоря юридический прецедент это следование не общему правилу установленному нормой права а норма сформировавшаяся в результате практики разрешения аналогичных дел. Судебный прецедент признавался источником права еще в Древнем Риме. Многие институты римского права сложились на базе судебных решений.
45389. Территория государства 57.35 KB
  Нормативные акты издаются органами обладающими нормотворческой компетенцией в строго установ ленной форме. По юридической силе все нормативные акты подразделяются на две большие группы: законы и подзакон ные акты.; 3 федеральные законы – это акты текущего законодательства посвящённые различным сторонам соци альноэкономической политической и духовной жизни общества например Гражданский кодекс РФ Уголов ный кодекс РФ Семейный кодекс РФ и пр. Виды подзаконных актов: 1 указы Президента РФ – высшие по юридической силе подзаконные...
45390. Правовое сознание: понятие, структура, уровни и виды 50.58 KB
  правовое сознание: понятие структура уровни и виды Правосознание – одна из форм общественного сознания наряду с политическим нравственным научным художественным философским и т. Следовательно правосознание – юридическая категория подлежащая изучению юридической наукой. Правосознание выполняет следующие основные функции раскрывающие его роль и социальное назначение в обществе: 1 оценочную; 2 регулятивную; 3 познавательную; 4 прогностическую. Ни одно юридическое явление образование ни один правовой институт не остаются вне...
45391. Государственный суверенитет: понятие признаки, формы выражения 47.37 KB
  Действие правовой нормы во времени начинается с момента вступления в юридическую силу содержащего ее нормативноправового акта и прекращается с момента утраты последним юридической силы. Например истечением определенного срока после опубликования нормативноправового акта. Цель такой отсрочки обеспечить чтобы до вступления нормативноправового акта в силу все заинтересованные лица могли тщательно изучить содержащиеся в нем правовые нормы и подготовиться к их реализации. Вступление в силу нормативноправового акта в целом или отдельных его...
45392. Основные подходы к типологии государства 46.97 KB
  Основные подходы к типологии государства Типология это теория о типах тех или иных явлений. Разделение государств на типы призвано помочь выяснить чьи интересы выражали и обслуживали государства объединенные в данный тип. Тип государства совокупность государств которые имеют сходные общие черты проявляющиеся в единстве закономерностей и тенденций развития базировании на одинаковых экономических производственных отношениях на одинаковом сочетании общесоциального и узкогруппового классового аспектов их сущности аналогичном уровне...
45393. Функции государства 45.94 KB
  Функции государства нельзя отождествлять с функциями его отдельных органов которые являются частью аппарата государства и находят свое выражение в компетенции в предмете ведения в правах и обязанностях полномочиях закрепленных за ними. Внутренние функции обеспечивают его внутреннюю политику: V политическая выработка внутренней политики государства регулирование сферы политических отношений обеспечение народовластия; 2 экономическая регулирование сферы экономических отношений создание условий для развития производства:...
45394. Правовые формы осуществления функций государства: понятие и виды юридической деятельности 56.7 KB
  К правовым формам относятся: 1 правотворческая – деятельность по подготовке и изданию нормативных актов способствующих осуществлению той или иной функции государства; 2 правоприменительная – деятельность по реализации нормативных актов путём принятия актов применения права; это повседневная работа по выполнению законов и по разрешению разнообразных вопросов управленческого характера; 3 правоохранительная – деятельность по защите прав и свобод человека и гражданина по предупреждению правонарушений и привлечению к юридической...
45395. Государственные органы: понятие, виды, принципы формирования и функционирования 95.76 KB
  Здесь необходимо подчеркнуть важную роль юридической квалификации в применении права ибо именно это правоприменительное действие есть условие обеспечивающее качество реализации юридических предписаний в практической жизни. Задача юридической квалификации в определении юридической природы конкретного фактического обстоятельства т. Обоснованность справедливость и эффективность итогового решения как результата квалификации зависят от качества установления юридической природы фактических обстоятельств от соблюдения правоприменителем...
45396. Форма государства: понятие и общая характеристика вопросов 51.9 KB
  форма государства: понятие и общая характеристика вопросов Любое государство помимо его сущности и социального назначения характеризуется также некоторыми внешними признаками. Совокупность его внешних характеристик определяющих порядок формирования и осуществления государственной власти административнотерриториальное устройство и составляет форму государства или форму организации государственной власти. Форма государства характеризует отношения между людьми и государством в процессе управления ими способы организации высших органов...