9907

Применение интерполяционных формул Ньютона при решении химико-технологических задач

Практическая работа

Физика

Применение интерполяционных формул Ньютона при решении химико-технологических задач. Цель работы. Располагая таблицей данных, полученных в результате некоторого химического или технологического эксперимента, научиться выполнять интерполя...

Русский

2013-03-18

309 KB

18 чел.

Применение интерполяционных формул Ньютона

при решении химико-технологических задач.

Цель работы . Располагая таблицей данных, полученных в результате некоторого химического или технологического эксперимента, научиться  выполнять интерполяцию, т.е. находить  любые промежуточные значения внутри таблицы, а также  выполнять экстраполяцию - находить значения неизвестной функции за пределами этой таблицы.

Теоретические положения. Пусть неизвестная функция   задана на  сетке равноотстоящих узлов   ,  где    своими значениями    (табличная или сеточная функция)

:                Таблица 1                                                                             (1)

X

…..

Y

…..

 

 На практике часто требуется найти промежуточные значения   , для   , находящихся между узлами   отрезка   . Для решения этой задачи  в численных методах обычно заменяют  другой функцией   , близкой к ней  и позволяющей выполнять над нею те или иные аналитические или вычислительные операции. Если положить  , то приходим к задаче  интерполирования (интерполяции).  Совершенно очевидно, что графиков   , проходящих через заданные точки   , можно изобразить сколь угодно много. Вопрос состоит в том, чтобы придать интерполяционной формуле   наиболее простой вид, подобный, например,  широко используемой формуле Тейлора.

Если для сеточной функции построена таблица конечных разностей                , то для интерполирования  в начале таблицы 1, для которого количество разностей максимально, удобно пользоваться первой интерполяционной формулой Ньютона:

,  (2)

где новая переменная   ,   - шаг таблицы 1, а   -  горизонтальная строка таблицы разностей. Формула (2) обычно применяется при значениях   , а именно  для интерполирования вперед  (при , т.е. при  ) и  экстраполирования  назад ( при   , т.е. при   ).     

Если требуется искать промежуточные значения функции в конце таблицы 1, то в этих случаях более эффективной является вторая интерполяционная формула Ньютона:

,           (3)

где   , а   - диагональная строка таблицы разностей.

Формулу (3) целесообразно использовать при значениях , т.е. в окресности узла    для интерполирования назад (при  , т.е. при  )  и  экстраполирования вперед  (при   , т.е. при   ).

Порядок выполнения работы.  

- получить от преподавателя вариант химического или технологического процесса  в виде таблицы  (1), а также два значения аргумента, для которых следует вычислить величины неизвестной нам функции,

- составить в  Excel  таблицу разностей,

- выписать первую интерполяционную формулу Ньютона (2),

- найти величину вспомогательной переменной  t для интерполирования,

- подставить в (2) данные из таблицы горизонтальных разностей, величину t, исходные данные  и выполнить вычисления (все результаты подстановок привести в РГР),

- выписать вторую интерполяционную формулу Ньютона (3),  

- найти величину вспомогательной переменной  t для экстраполирования,

- подставить в (3) данные из таблицы диагональных разностей, величину t, исходные данные  и выполнить вычисления (все результаты подстановок привести в РГР),

- определить относительные погрешности отдельно для интерполирования и экстраполирования,

- сделать выводы по работе.

Варианты исходных данных.  Результаты экспериментов представлены в виде таблиц     :

1

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

y

0.2

0.25

0.26

0.21

0.14

0.07

0

-0.07

-0.13

-0.17

-0.21

   

2

X

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Y

0.12

0.17

0.19

0.18

0.17

0.13

0.06

-0.02

-0.07

-0.12

-0.17

3

X

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Y

0.03

0.07

0.11

0.14

0.16

0.17

0.16

0.14

0.09

0.03

-0.06

4

X

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Y

-0.03

0.12

0.21

0.27

0.31

0.32

0.31

0.28

0.23

0.16

0.10

5

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

y

-0.13

-0.03

0.03

0.06

0.08

0.07

0.06

0.03

-0.04

-0.17

-0.32

6

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

y

-0.03

-0.14

-0.18

-0.17

-0.15

-0.08

0.01

0.14

0.26

0.33

0.38

7

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Y

0.04

-0.07

-0.10

-0.09

-0.04

0.04

0.13

0.19

0.24

0.28

0.30

8

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

y

0.14

0.06

0

-0.04

-0.06

-0.05

-0.03

0.03

0.08

0.16

0.24

9

X

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Y

0.09

-0.01

-0.08

-0.13

-0.17

-0.16

-0.12

-0.04

0.03

0.09

0.14

10

X

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Y

0.26

0.11

0.08

0.02

-0.04

-0.08

-0.10

-0.11

-0.09

-0.04

0.04

11

X

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Y

-0.03

-0.10

-0.14

-0.15

-0.13

-0.08

-0.01

0.07

0.14

0.19

0.23

12

X

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Y

-0.09

-0.10

-0.11

-0.08

-0.05

-0.01

0.04

0.08

0.11

0.12

0.11

13

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

y

-0.16

-0.13

-0.07

-0.01

0.04

0.06

0.07

0.05

0.02

-0.03

-0.09

14

X

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Y

-0.23

-0.17

-0.09

-0.02

0.06

0.11

0.14

0.12

0.04

-0.08

-0.19

15

X

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Y

0.09

0.03

0

-0.01

-0.02

-0.03

-0.06

-0.08

-0.11

-0.16

-0.22

16

X

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

y

0.12

0.14

0.13

0.09

0.04

-0.04

-0.09

-0.10

-0.07

0.01

0.11

17

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

y

-0.16

-0.05

0.02

0.08

0.12

0.13

0.12

0.09

0.07

0.02

-0.03

18

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

y

-0.08

0.01

0.04

0.07

0.08

0.07

0.06

0.03

-0.01

-0.04

-0.09

19

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

y

-0.03

0.06

0.11

0.13

0.12

0.08

0.02

-0.08

-0.14

-0.18

-0.20

20

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

y

0.03

0.12

0.18

0.21

0.20

0.17

0.11

0.01

-0.12

-0.22

-0.27

21

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

y

0.14

0.08

-0.01

-0.09

-0.11

-0.09

-0.04

0.01

0.07

0.11

0.14

22

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

y

0.08

0.07

0.04

0.01

-0.05

-0.11

-0.12

-0.08

-0.02

0.04

0.09

23

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

y

-0.10

-0.03

0.04

0.09

0.12

0.13

0.11

0.08

0.06

0.04

0.03

24

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

y

-0.18

-0.09

-0.01

0.07

0.13

0.17

0.20

0.19

0.16

0.12

0.03

25

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

y

-0.03

0.03

0.06

0.07

0.06

0.05

0.01

-0.05

-0.11

-0.15

-0.18

26

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

y

0.19

0.16

0.08

-0.03

-0.09

-0.12

-0.07

0.01

0.09

0.17

0.21

27

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

y

0.12

0.04

-0.09

-0.20

-0.24

-0.23

-0.18

-0.11

-0.03

0.03

0.11

28

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

y

0.06

0.01

-0.07

-0.14

-0.18

-0.20

-0.19

-0.17

-0.12

-0.04

0.03

29

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

y

0.07

0.12

0.15

0.16

0.14

0.12

0.07

0.03

-0.02

-0.06

-0.08

30

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

y

0.14

0.13

0.12

0.11

0.06

0

-0.05

-0.09

-0.12

-0.13

-0.14

Найти значения функции    в точках    и    , используя первую и вторую интерполяционные формулы Ньютона.

1

0.12

1.08

16

0.12

1.08

2

0.13

1.07

17

0.13

1.07

3

0.14

1.06

18

0.14

1.06

4

0.15

1.05

19

0.15

1.05

5

0.16

1.04

20

0.16

1.04

6

0.17

1.03

21

0.12

1.08

7

0.18

1.02

22

0.18

1.02

8

0.22

1.08

23

0.17

1.03

9

0.23

1.07

24

0.28

1.02

10

0.24

1.06

25

0.24

1.06

11

0.25

1.05

26

0.23

1.07

12

0.26

1.04

27

0.22

1.08

13

0.27

1.03

28

0.25

1.05

14

0.28

1.02

29

0.26

1.04

15

0.08

1.02

30

0.27

1.03

Пример расчета.         

  1.  Цель работы.   

На основании данных, полученных в результате  сложного химического эксперимента, найти два интересующих нас недостающих значения: одно – в начале таблицы, а другое – за ее пределами, т.е. попытаться предсказать поведение процесса, не выполняя его.

  1.  Исходные данные.

Химический процесс задан следующей табличной функцией    , где   х є [0;1]:

Х

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

У

-0,08

-0,05

0

0,08

0,16

0,21

0,23

0,21

0,16

0,09

0

Требуется вычислить с помощью интерполяционных формул Ньютона значения  у(x)  в точках   х = 0.22 и   х = 1.05,  и посчитать относительные ошибки  вычислений -  δ.

  1.  Таблица разностей.

Составим  в Excel таблицу разностей для  х є [0;1]  с шагом  h = 0.1  и точностью  ε = 10-2.

В расчетах конечных разностей n-ого порядка (или n-ой конечной разности) используется следующая формула:

Х

y

∆y

2y

3y

4y

5y

6y

7y

8y

9y

10y

0

-0,08

0,03

0,02

0,01

-0,04

0,04

-0,01

-0,06

0,20

-0,46

0,90

0,1

-0,05

0,05

0,03

-0,03

0

0,03

-0,07

0,14

-0,26

0,44

0,2

0

0,08

0

-0,03

0,03

-0,04

0,07

-0,12

0,18

0,3

0,08

0,08

-0,03

0

-0,01

0,03

-0,05

0,06

0,4

0,16

0,05

-0,03

-0,01

0,02

-0,02

0

0,5

0,21

0,02

-0,04

0,01

0

-0,01

0,6

0,23

-0,02

-0,03

0,01

-0,01

0,7

0,21

-0,05

-0,02

0

0,8

0,16

-0,07

-0,02

0,9

0,09

-0,09

1,0

0

  1.  Первый интерполяционный полином Ньютона.

Для расчета значения функции у(х) в точке х = 0.22 применим I интерполяционную формулу   Ньютона, которая удобна при интерполировании функции вперед от начала таблицы:

 где

x – неизвестная величина;

х0 – узел;

Подставляя разности,  у0   и   t  в формулу,  найдем   у(0.22) = N(0.22):

у(0.22) = 0,013

  1.  Второй интерполяционный полином Ньютона.

Для расчета значения функции у(х) в точке х = 1.05 применим II интерполяционную формулу Ньютона, которая удобна при интерполировании функции вблизи конца таблицы (в нашем случае – это экстраполирование):

 где  

х  – неизвестная величина;

хn – узел;

Подставляя численные значения в формулу, найдем     у(1.05) = N(1.05):

у(1.05) = -0.045

  1.  Определим относительные погрешности   δ,%.

,

где у – точка на графике;

N(x) – значение функции, вычисленное по формуле Ньютона;

  1.     Относительная погрешность при интерполировании:

N(0.22) = 0.013

y(0.22) = 0,015

 δ(0.22) = 15.38%

  1.  Относительная погрешность при экстраполировании:

N(1.05) = -0.045

y(1.05) = -0.045

δ = 0%

7. Выводы по работе.

PAGE  1


EMBED Mathcad  

EMBED Mathcad  

EMBED Mathcad  

EMBED Mathcad  

EMBED Mathcad  

EMBED Mathcad  

EMBED Mathcad  

EMBED Mathcad  

EMBED Mathcad  

EMBED Mathcad  

EMBED Mathcad  


 

А также другие работы, которые могут Вас заинтересовать

27494. Общая характеристика Романо-германской правовой системы 26 KB
  Эта правовая семья возникла на основе рецепции римского права. Основной источник права Закон нормативный акт. Ей присуще четкое деление норм права на отрасли а все отрасли подразделяются на две подсистемы: частное право и публичное право. К сфере публичного права относятся административное уголовное конституционное международное публичное.
27495. Общая характеристика судебной власти и в России 27 KB
  Общая характеристика судебной власти и в России В соответствии с принципом разделения властей одной из трёх наряду с законодательной и исполнительной властью ветвей власти является судебная. Органы судебной власти разрешают правовые споры тяжбы между конкретными лицами а также рассматривают дела об оспаривании правовых предписаний на предмет соответствия правилам более высокой силы законов Конституции подзаконных нормативных актов законам так называемый нормоконтроль в отдельных случаях дают толкование правовым нормам в основном...
27496. Общая характеристика типов (моделей) соотношения права и государства 31.5 KB
  Общая характеристика типов моделей соотношения права и государства. Проблема соотношения государства и права достаточно сложна. Согласно первой государство выше и важнее права оно творит право и использует его в качестве инструмента своей политики. Тоталитарная модель соотношения государства и права была широко распространена в советской научной и учебной литературе так как она уходит корнями в учение К.
27497. Общая характеристика феодального государства и права 30 KB
  Общая характеристика феодального государства и права. Типология государства традиционно рассматривают как теория учение о типах государств когдалибо существовавших в истории человеческого общества или существующих в настоящее время. Типология государства это процесс систематизации государств с учетом их сущностных свойств для повышения эффективности в теоретической и практической деятельности по изучению государства и правоприменения. Под типом государства понимаются взятые в единстве общие черты различных государств система их...
27498. Общенаучные и частнонаучные методы теории права и государства 30.5 KB
  Признаками методов теории государства и права являются: способствование углублению знаний о государстве и праве соответствование понятиям права осуществление юридического познания окружающей действительности. Все методы теории государства и права можно расположить в следующей последовательности: всеобщие методы; общенаучные методы; частнонаучные методы. В теории государства и права используется весьма широко.
27499. Определите гипотезу и диспозицию ст. 211 ГК РФ 32 KB
  Нормы права устанавливающие определенный шаблон поведения в той или иной ситуации т. 1 Гипотеза юридической нормы часть юридической нормы указывающая на жизненные обстоятельства при наличии или отсутствии которых реализуется норма. Если в гипотезе указано одно обстоятельство с наличием или отсутствием которого связывается действие юридической нормы то такая гипотеза называется простой. Если гипотеза действие нормы ставит в зависимость от наличия или отсутствия одновременно двух или более обстоятельств то она называется сложной.
27500. Определите структуру пенсионного правоотношения 25 KB
  В структуру правоотношения входят: 1 Субъекты участники. 3 Содержание: Субъективное право право принадлежащее субъекту права т.е управомоченному лицу мера возможного поведения.
27501. Определите структуру страхового правоотношения 30.5 KB
  Определите структуру страхового правоотношения. Страховое правоотношение это отношение урегулированное нормами страхового права и представляющее организационное единство правовой формы и его содержания возникающее действующее изменяющееся и прекращающееся на основе норм страхового права и определяемых ими субъективных прав юридических обязанностей и ответственности страхователя и страховщика. Структура страхового правоотношения состоит из следующих элементов: 1 субъект; 2 объект; 3 содержание. Так например к числу основных прав...
27502. Определите, к какому виду актов относятся: приговор суда, приказ о зачислении на работу, и какова их структура 27 KB
  Определите к какому виду актов относятся: приговор суда приказ о зачислении на работу и какова их структура. Структура: Структурная единица логический элемент правового акта объединяющий сходные в той или иной степени нормы права.