9907

Применение интерполяционных формул Ньютона при решении химико-технологических задач

Практическая работа

Физика

Применение интерполяционных формул Ньютона при решении химико-технологических задач. Цель работы. Располагая таблицей данных, полученных в результате некоторого химического или технологического эксперимента, научиться выполнять интерполя...

Русский

2013-03-18

309 KB

18 чел.

Применение интерполяционных формул Ньютона

при решении химико-технологических задач.

Цель работы . Располагая таблицей данных, полученных в результате некоторого химического или технологического эксперимента, научиться  выполнять интерполяцию, т.е. находить  любые промежуточные значения внутри таблицы, а также  выполнять экстраполяцию - находить значения неизвестной функции за пределами этой таблицы.

Теоретические положения. Пусть неизвестная функция   задана на  сетке равноотстоящих узлов   ,  где    своими значениями    (табличная или сеточная функция)

:                Таблица 1                                                                             (1)

X

…..

Y

…..

 

 На практике часто требуется найти промежуточные значения   , для   , находящихся между узлами   отрезка   . Для решения этой задачи  в численных методах обычно заменяют  другой функцией   , близкой к ней  и позволяющей выполнять над нею те или иные аналитические или вычислительные операции. Если положить  , то приходим к задаче  интерполирования (интерполяции).  Совершенно очевидно, что графиков   , проходящих через заданные точки   , можно изобразить сколь угодно много. Вопрос состоит в том, чтобы придать интерполяционной формуле   наиболее простой вид, подобный, например,  широко используемой формуле Тейлора.

Если для сеточной функции построена таблица конечных разностей                , то для интерполирования  в начале таблицы 1, для которого количество разностей максимально, удобно пользоваться первой интерполяционной формулой Ньютона:

,  (2)

где новая переменная   ,   - шаг таблицы 1, а   -  горизонтальная строка таблицы разностей. Формула (2) обычно применяется при значениях   , а именно  для интерполирования вперед  (при , т.е. при  ) и  экстраполирования  назад ( при   , т.е. при   ).     

Если требуется искать промежуточные значения функции в конце таблицы 1, то в этих случаях более эффективной является вторая интерполяционная формула Ньютона:

,           (3)

где   , а   - диагональная строка таблицы разностей.

Формулу (3) целесообразно использовать при значениях , т.е. в окресности узла    для интерполирования назад (при  , т.е. при  )  и  экстраполирования вперед  (при   , т.е. при   ).

Порядок выполнения работы.  

- получить от преподавателя вариант химического или технологического процесса  в виде таблицы  (1), а также два значения аргумента, для которых следует вычислить величины неизвестной нам функции,

- составить в  Excel  таблицу разностей,

- выписать первую интерполяционную формулу Ньютона (2),

- найти величину вспомогательной переменной  t для интерполирования,

- подставить в (2) данные из таблицы горизонтальных разностей, величину t, исходные данные  и выполнить вычисления (все результаты подстановок привести в РГР),

- выписать вторую интерполяционную формулу Ньютона (3),  

- найти величину вспомогательной переменной  t для экстраполирования,

- подставить в (3) данные из таблицы диагональных разностей, величину t, исходные данные  и выполнить вычисления (все результаты подстановок привести в РГР),

- определить относительные погрешности отдельно для интерполирования и экстраполирования,

- сделать выводы по работе.

Варианты исходных данных.  Результаты экспериментов представлены в виде таблиц     :

1

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

y

0.2

0.25

0.26

0.21

0.14

0.07

0

-0.07

-0.13

-0.17

-0.21

   

2

X

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Y

0.12

0.17

0.19

0.18

0.17

0.13

0.06

-0.02

-0.07

-0.12

-0.17

3

X

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Y

0.03

0.07

0.11

0.14

0.16

0.17

0.16

0.14

0.09

0.03

-0.06

4

X

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Y

-0.03

0.12

0.21

0.27

0.31

0.32

0.31

0.28

0.23

0.16

0.10

5

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

y

-0.13

-0.03

0.03

0.06

0.08

0.07

0.06

0.03

-0.04

-0.17

-0.32

6

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

y

-0.03

-0.14

-0.18

-0.17

-0.15

-0.08

0.01

0.14

0.26

0.33

0.38

7

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Y

0.04

-0.07

-0.10

-0.09

-0.04

0.04

0.13

0.19

0.24

0.28

0.30

8

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

y

0.14

0.06

0

-0.04

-0.06

-0.05

-0.03

0.03

0.08

0.16

0.24

9

X

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Y

0.09

-0.01

-0.08

-0.13

-0.17

-0.16

-0.12

-0.04

0.03

0.09

0.14

10

X

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Y

0.26

0.11

0.08

0.02

-0.04

-0.08

-0.10

-0.11

-0.09

-0.04

0.04

11

X

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Y

-0.03

-0.10

-0.14

-0.15

-0.13

-0.08

-0.01

0.07

0.14

0.19

0.23

12

X

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Y

-0.09

-0.10

-0.11

-0.08

-0.05

-0.01

0.04

0.08

0.11

0.12

0.11

13

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

y

-0.16

-0.13

-0.07

-0.01

0.04

0.06

0.07

0.05

0.02

-0.03

-0.09

14

X

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Y

-0.23

-0.17

-0.09

-0.02

0.06

0.11

0.14

0.12

0.04

-0.08

-0.19

15

X

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Y

0.09

0.03

0

-0.01

-0.02

-0.03

-0.06

-0.08

-0.11

-0.16

-0.22

16

X

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

y

0.12

0.14

0.13

0.09

0.04

-0.04

-0.09

-0.10

-0.07

0.01

0.11

17

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

y

-0.16

-0.05

0.02

0.08

0.12

0.13

0.12

0.09

0.07

0.02

-0.03

18

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

y

-0.08

0.01

0.04

0.07

0.08

0.07

0.06

0.03

-0.01

-0.04

-0.09

19

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

y

-0.03

0.06

0.11

0.13

0.12

0.08

0.02

-0.08

-0.14

-0.18

-0.20

20

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

y

0.03

0.12

0.18

0.21

0.20

0.17

0.11

0.01

-0.12

-0.22

-0.27

21

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

y

0.14

0.08

-0.01

-0.09

-0.11

-0.09

-0.04

0.01

0.07

0.11

0.14

22

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

y

0.08

0.07

0.04

0.01

-0.05

-0.11

-0.12

-0.08

-0.02

0.04

0.09

23

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

y

-0.10

-0.03

0.04

0.09

0.12

0.13

0.11

0.08

0.06

0.04

0.03

24

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

y

-0.18

-0.09

-0.01

0.07

0.13

0.17

0.20

0.19

0.16

0.12

0.03

25

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

y

-0.03

0.03

0.06

0.07

0.06

0.05

0.01

-0.05

-0.11

-0.15

-0.18

26

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

y

0.19

0.16

0.08

-0.03

-0.09

-0.12

-0.07

0.01

0.09

0.17

0.21

27

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

y

0.12

0.04

-0.09

-0.20

-0.24

-0.23

-0.18

-0.11

-0.03

0.03

0.11

28

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

y

0.06

0.01

-0.07

-0.14

-0.18

-0.20

-0.19

-0.17

-0.12

-0.04

0.03

29

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

y

0.07

0.12

0.15

0.16

0.14

0.12

0.07

0.03

-0.02

-0.06

-0.08

30

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

y

0.14

0.13

0.12

0.11

0.06

0

-0.05

-0.09

-0.12

-0.13

-0.14

Найти значения функции    в точках    и    , используя первую и вторую интерполяционные формулы Ньютона.

1

0.12

1.08

16

0.12

1.08

2

0.13

1.07

17

0.13

1.07

3

0.14

1.06

18

0.14

1.06

4

0.15

1.05

19

0.15

1.05

5

0.16

1.04

20

0.16

1.04

6

0.17

1.03

21

0.12

1.08

7

0.18

1.02

22

0.18

1.02

8

0.22

1.08

23

0.17

1.03

9

0.23

1.07

24

0.28

1.02

10

0.24

1.06

25

0.24

1.06

11

0.25

1.05

26

0.23

1.07

12

0.26

1.04

27

0.22

1.08

13

0.27

1.03

28

0.25

1.05

14

0.28

1.02

29

0.26

1.04

15

0.08

1.02

30

0.27

1.03

Пример расчета.         

  1.  Цель работы.   

На основании данных, полученных в результате  сложного химического эксперимента, найти два интересующих нас недостающих значения: одно – в начале таблицы, а другое – за ее пределами, т.е. попытаться предсказать поведение процесса, не выполняя его.

  1.  Исходные данные.

Химический процесс задан следующей табличной функцией    , где   х є [0;1]:

Х

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

У

-0,08

-0,05

0

0,08

0,16

0,21

0,23

0,21

0,16

0,09

0

Требуется вычислить с помощью интерполяционных формул Ньютона значения  у(x)  в точках   х = 0.22 и   х = 1.05,  и посчитать относительные ошибки  вычислений -  δ.

  1.  Таблица разностей.

Составим  в Excel таблицу разностей для  х є [0;1]  с шагом  h = 0.1  и точностью  ε = 10-2.

В расчетах конечных разностей n-ого порядка (или n-ой конечной разности) используется следующая формула:

Х

y

∆y

2y

3y

4y

5y

6y

7y

8y

9y

10y

0

-0,08

0,03

0,02

0,01

-0,04

0,04

-0,01

-0,06

0,20

-0,46

0,90

0,1

-0,05

0,05

0,03

-0,03

0

0,03

-0,07

0,14

-0,26

0,44

0,2

0

0,08

0

-0,03

0,03

-0,04

0,07

-0,12

0,18

0,3

0,08

0,08

-0,03

0

-0,01

0,03

-0,05

0,06

0,4

0,16

0,05

-0,03

-0,01

0,02

-0,02

0

0,5

0,21

0,02

-0,04

0,01

0

-0,01

0,6

0,23

-0,02

-0,03

0,01

-0,01

0,7

0,21

-0,05

-0,02

0

0,8

0,16

-0,07

-0,02

0,9

0,09

-0,09

1,0

0

  1.  Первый интерполяционный полином Ньютона.

Для расчета значения функции у(х) в точке х = 0.22 применим I интерполяционную формулу   Ньютона, которая удобна при интерполировании функции вперед от начала таблицы:

 где

x – неизвестная величина;

х0 – узел;

Подставляя разности,  у0   и   t  в формулу,  найдем   у(0.22) = N(0.22):

у(0.22) = 0,013

  1.  Второй интерполяционный полином Ньютона.

Для расчета значения функции у(х) в точке х = 1.05 применим II интерполяционную формулу Ньютона, которая удобна при интерполировании функции вблизи конца таблицы (в нашем случае – это экстраполирование):

 где  

х  – неизвестная величина;

хn – узел;

Подставляя численные значения в формулу, найдем     у(1.05) = N(1.05):

у(1.05) = -0.045

  1.  Определим относительные погрешности   δ,%.

,

где у – точка на графике;

N(x) – значение функции, вычисленное по формуле Ньютона;

  1.     Относительная погрешность при интерполировании:

N(0.22) = 0.013

y(0.22) = 0,015

 δ(0.22) = 15.38%

  1.  Относительная погрешность при экстраполировании:

N(1.05) = -0.045

y(1.05) = -0.045

δ = 0%

7. Выводы по работе.

PAGE  1


EMBED Mathcad  

EMBED Mathcad  

EMBED Mathcad  

EMBED Mathcad  

EMBED Mathcad  

EMBED Mathcad  

EMBED Mathcad  

EMBED Mathcad  

EMBED Mathcad  

EMBED Mathcad  

EMBED Mathcad  


 

А также другие работы, которые могут Вас заинтересовать

66834. ХВИЛЬОВА І КВАНТОВА ОПТИКА, ФІЗИКА АТОМА, ОСНОВИ КВАНТОВОЇ МЕХАНІКИ, ФІЗИКА АТОМНОГО ЯДРА 351.5 KB
  Матеріал розділів поділено на параграфи. На початку кожного з них подано короткий перелік формул і законів, які стосуються розв'язування задач певної теми. Ці формули дозволяють студентові скласти уявлення про обсяг теоретичного матеріалу, який необхідно опрацювати...
66835. ОСНОВИ КВАНТОВОЇ МЕХАНІКИ. ЯДЕРНА ФІЗИКА 490 KB
  Атом водню за теорією Бора Основні формули Момент імпульсу електрона на стаціонарних орбітах: L = m vn rn = nħ n = 123.1 де m маса електрона rn радіус орбіти vn швидкість електрона на орбіті n головне квантове число ħ постійна Дірака: ħ= h 2 де h постійна Планка. Енергія електрона що знаходиться на nй орбіті...
66837. Построение продольного и поперечного профилей трассы 1.23 MB
  По результатам нивелирования вычисляют высотные отметки точек трассы. Отметки используют для построения продольного и поперечных профилей. В табл. 61 приведены отметки реперов, пикетных точек и точек поперечного створа по трассе, соединяющей Бетонный завод с Песчаным карьером.
66838. Измерительные приборы 658 KB
  Принципиальная схема автоматического уравновешенного моста В измерительную схему входят: R1 R2 и R3 – резисторы образующие три плеча мостовой схемы четвертое плечо образовано: Rt сопротивление термометра; Rр сопротивление реохорда; Rш шунт реохорда служащий для подгонки сопротивления...
66840. ОЦЕНКА ВЕРОЯТНОСТИ БАНКРОТСТВА ОРГАНИЗАЦИИ НА ОСНОВЕ НЕЙРОННОЙ СЕТИ 456.5 KB
  Вопросы определения вероятности дефолта и оценки кредитоспособности предприятия являются актуальными как для самого предприятия так и для его основных контрагентов в наибольшей степени для кредитных организаций и всех чье будущее финансовое положение...