99073

СИНЕРГЕТИКА В ХИМИИ

Реферат

Химия и фармакология

Одним из наиболее впечатляющих примеров возникновения самоорганизации являются колебательные химические реакции открытие которых принадлежит Борису Павловичу Белоусову. Колебательные реакции это периодические процессы характеризующиеся колебаниями концентраций некоторых промежуточных соединений и соответственно скоростей превращения Такие процессы наблюдаются в газовой и...

Русский

2016-07-29

125.5 KB

0 чел.

СИНЕРГЕТИКА В ХИМИИ

      В 70-х г. XX в. появилось новое научное направление – синергетика – теория самоорганизации, претендующая на открытие некоего универсального механизма, с помощью которого осуществляется самоорганизация как в живой, так и в неживой природе

По определению основоположника этого направления в науке немецкого физика

Германа Хакена:

«Самоорганизация – спонтанное образование высокоупорядоченных структур из зародышей или даже хаоса»

Хакен Герман (род. 12 июля 1927 г.) — немецкий физик-теоретик, основатель синергетики. Изучал физику и математику в университетах Галле (1946—1948) и Эрлангена (1948—1950), получив степени доктора философии и доктора естественных наук.

 С 1960 г. является профессором теоретической физики университета Штутгарта.

До ноября 1997 г. был директором Института теоретической физики и синергетики университета Штутгарта.

 С декабря 1997 г. является почетным профессором и возглавляет Центр синергетики в этом институте, а также ведет исследования в Центре по изучению сложных систем в университе Флориды (Бока Рэтон, США). Он является издателем шпрингеровской серии книг по синергетике, в рамках которой к настоящему времени опубликовано уже 69 тт.

Одним из наиболее впечатляющих примеров возникновения самоорганизации являются колебательные химические реакции, открытие которых принадлежит Борису Павловичу Белоусову

Борис Павлович Белоусов (19 февраля 1893, Москва — 12 июня 1970, Москва) — российский и советский химик и биофизик.

Как военный химик Белоусов занимался разработкой способов борьбы с отравляющими веществами, составами для противогазов, газовыми анализаторами, препаратами, снижающими воздействие радиации на организм. В 1951 году при исследовании окисления лимонной кислоты броматом в присутствии катализатора (сульфат церия), обнаружил концентрационные колебания ионов церия [1]. Так была открыта всемирно известная колебательная реакция Белоусова [2], которая является одной из первых работ в области нелинейной химической динамики. Исследование механизма реакции Белоусова с 1961 г. проводил Жаботинский А. М. по предложению профессора С. Э. Шноля, поэтому класс колебательных реакций называют реакцией Белоусова-Жаботинского (BZ-reaction). В 1980 году Борису Павловичу Белоусову посмертно была присуждена Ленинская премия. Реакция Белоусова-Жаботинского вошла в золотой фонд науки XX века.

Колебательные реакции

— это периодические процессы, характеризующиеся колебаниями концентраций некоторых промежуточных соединений и соответственно скоростей превращения

Такие процессы наблюдаются в газовой и жидкой фазах, особенно часто на границе раздела этих фаз с твердой фазой.

  Колебательными чаще бывают редокс-реакции и реакции, сопровождающиеся появлением новой фазы вещества. Причиной возникновения колебаний концентрации является наличие обратных связей между отдельными стадиями сложной реакции: положительных и отрицательных

Колебательные реакции представляют собой циклические процессы

В 1951 г. Б.П. Белоусов открыл колебания концентраций окисленной и восстановленной форм церия в реакции взаимодействия лимонной кислоты с броматом, катализируемой ионами церия

В конце 1961 г. А.М. Жаботинский получил колебания при использовании в качестве восстановителя в реакции Белоусова малоновой и яблочной кислот

Анатолий Маркович Жаботинский

(17 января 1938, Москва — 16 сентября 2008, Бостон) — советский и американский биофизик, физико-химик, первоисследователь механизма реакции Белоусова-Жаботинского. С 1991 по 2008 работал в университете Брандайса, штат Массачусетс

Новость об этой изумительной реакции обошла весь мир, и в нескольких лабораториях (в СССР, США и Западной Европе) стали интенсивно изучать реакцию под названием "реакция Белоусова—Жаботинского" (БЖ)

В реакции Белоусова-Жаботинского при взаимодействии ионов Ce4+ с малоновой кислотой происходит их восстановление:

Се4+ + C3H3O4 = Ce3+ + продукт   (1)

Се3+ + ВгО3- → Се4+      (2)

    Реакция (2) относится к автокаталитическим, и в ней самоускоряющемуся протеканию предшествует период индукции, то есть реакция включается не сразу

В реакции Белоусова-Жаботинского при взаимодействии ионов Ce4+ с малоновой кислотой происходит их восстановление:

Се4+ + C3H3O4 = Ce3+ + продукт   (1)

Се3+ + ВгО3- → Се4+      (2)

    Реакция (2) относится к автокаталитическим, и в ней самоускоряющемуся протеканию предшествует период индукции, то есть реакция включается не сразу

Окраска раствора, обусловленная поглощением света в видимой области спектра комплексом Се4+ с малоновой кислотой, исчезает

       

        По завершении периода индукции происходит самоускоряющийся переход ионов Ce3+ в Ce4+ и раствор окрашивается вновь

Б. П. Белоусов уже в первых  опытах заметил:  

   при  прекращении перемешивания изменение окраски в растворе распространяется волнами:

«Колба становится  похожей  на  зебру»

      Это распространение  химических  колебаний   в   пространстве   стало   особенно наглядным, когда в  1970  г.  А.  М.  Жаботинский  и  А.  Н.  Заикин  налили реакционную  смесь  тонким  слоем  в  чашку  Петри.   В   чашке   образуются концентрические   окружности,   спирали,   «вихри», распространяющиеся со скоростью около 1 мм/мин

Рис.1. Распространение  химических  колебаний   в   пространстве

Периодический характер процесса можно объяснить следующим образом…  

В результате реакции (1):

Ce(IV) + малоновая кислота → Ce (III) + продукт

образуются бромид-ионы, замедляющие реакцию (2):

Ce(III) + HBrO3 → Ce(IV) + продукты

Концентрация бромида зависит от скорости реакции, в которой он расходуется за счет ВгО3- + Br-→ Br2

  

Если концентрация бромида достаточно высока, то каталитический цикл прерывается

В целом механизм реакции БЖ может быть описан следующим набором уравнений:

Процесс А

BrO3- + 2Br- + 3CH2(COOH)2 + 3H+ → 3BrCH(COOH)2 + 3H2O

 

BrO3- + Br-+ 2H+→ HBrO2 + HOBr

HBrO2 + Br- + H+→ 2HOBr

HOBr + Br- + H+→ Br2 + H2O

Br2 + CH2(COOH)2→ BrCH(COOH)2 + Br- + H+

Процесс Б

BrO3- + 4Ce4+ + CH2(COOH)2 + 5H+ → BrCH(COOH)2 +

4Ce4+ + 3H2O

 

BrO3- + HBrO2 + H+ → 2BrO2 + H2O, BrO2 + Ce3+ + H+ →

HBrO2 + Ce4+

2HBrO2 → BrO3- + HOBr + H+

 

HOBr + CH2(COOH)2 → BrCH(COOH)2 + H2O

Кроме приведенных идут также реакции:

6Ce4+ + CH2(COOH)2 + 2H2O → 6Ce3+ + HCOOH + 2CO2 + 6H+,

4Ce4+ + BrCH(COOH)2 + 2H2O → Br- + 4Ce3+ + HCOOH + 2CO2 + 5H+

Модель Белоусова-Жаботинского

(модель брюсселятора)

     К1

1. А → Х1

                 К2

2. 2Х1 + Х2 →3Х1

              К3

3. В + Х1 →Х2 + D

        К2

4. Х1 →Е               

Суммарное уравнение:

А + В  → D + Е

А, В являются исходными веществами, D, Е – продуктами реакции, а Х1, Х2 – промежуточные соединения

Этот колебательный процесс был бы невозможен, так как:

- кооперативное поведение молекул в растворе не возможно без обратной связи,

- нет источника энергии

  

    В реакции Белоусова-Жаботинского источником энергии служит органическая малоновая кислота. При ее полном окислении колебания в реакции затухают и сама реакция прекращается

В 1972 г. Р. Нойес  и Филд из Орегона разработали модель химической реакции, основанную на механизме реакции БЖ

       Они показали,  что  реакция  БЖ – итог,  по  крайней  мере,  десяти  реакций,  которые   можно объединить в три группы – А, Б и В. Эта модель была названа орегонатором

Известно большое число химических реакций, в которых наблюдаются колебательные изменения концентрации реагентов:

  •  катализируемые броматные осцилляторы (реакция Белоусова—Жаботинского);
  •  некатализируемые броматные осцилляторы;
  •   осцилляторы на основе хлорит-ионов;
  •  иодатные и пероксидные осцилляторы и т.д.

        

Определенный интерес представляют гомогенные колебательные химические реакции с участием пероксида водорода — реакции Брея-Либавски и Бриггса-Раушера, основанные на проявлении двойственной роли H2O2 как окислителя и восстановителя.

  Разложение пероксида водорода, катализируемое иодатом (реакция Брея-Либавски):

1) 5H2O2 + I2 → 2HIO3 + 4H2O

(окисление иода до иодноватой кислоты пероксидом водорода),

2) 5H2O2 + 2HIO3 → I2 + 5O2 + 6H2O

(восстановление иодноватой кислоты до иода пероксидом водорода)

Эти реакции впервые были описаны Оже.

  В 1921 г. Брею удалось обнаружить в данной системе колебания, имеющие в условиях эксперимента затухающий характер.

  Реакция (1) автокаталитическая и протекает с высокой скоростью.

  Скорость реакции (2) относительно невелика.

  В 1967 году было подтверждено наличие колебаний в этой реакции и предложена математическая модель, описывающая колебания, подобные экспериментально наблюдаемым.

  Иодными часами была названа реакция, открытая Бриггсом и Раушером в 1973 г. Эта реакция похожа на реакцию Брея иодат-пероксид водорода.

  В состав реакционной системы входят KIO3, H2O2, HClO4(H2SO4), CH2(COOH)2, MnSO4, крахмал


 

А также другие работы, которые могут Вас заинтересовать

57775. Взаємне розміщення прямих на площині 3.51 MB
  Мета та задачі уроку: узагальнити й систематизувати знання учнів з теми; закріпити вміння застосовувати отримані знання під час розв’язування задач; розвивати логічне мислення, комунікативні навички...
57776. Отзвуки «Серебряного века» 93.5 KB
  Цели урока: познакомить учащихся с творчеством выдающихся поэтов и композиторов эпохи серебряного века; развивать умение вслушиваться в музыку стихотворений и музыкальных произведений развивать воображение творческие способности...
57777. Погода. Спостереження за погодою 1.21 MB
  Тип проекту: Пізнавальний дослідницький творчий Задачі проекту: розширити знання учнів про атмосферні явища шляхом узагальненого поняття погода; познайомитися з науковими дослідженнями прогнозування погоди виявити...
57778. Застосування похідної для побудови графіків функції 458.5 KB
  Яка функція називається опуклої вниз на інтервалі ; b Яка функція називається опуклою в гору на інтервалі ; b Що називається точкою перегину графіка функції Назвіть властивості графіків опуклості функції...
57779. ЗАСТОСУВАННЯ ПОХІДНОЇ ДО РОЗВ’ЯЗУВАННЯ ПРИКЛАДНИХ ЗАДАЧ 201.5 KB
  МЕТА: перевірити знання учнями формул для знаходження похідної та вміння застосовувати метод диференціального числення до розв’язування прикладних задач вміння виділяти етапи в розв’язуванні прикладних задач...
57780. Экстремальные задачи 2.81 MB
  Цель: ознакомить учащихся с понятием экстремальные задачи; составить алгоритм их решения с помощью производной; раскрыть область применения производной, показать, что производная – способ исследования процессов действительности и современного производства.
57781. Застосування похідної до дослідження функції 582.5 KB
  На дошці учень виконую вправу: знайти максимум функції. Перше завдання детектива Кожен учень отримує картку із завдання дослідити функцію. За виконання цього завдання учень отримує різну зарплатню оцінку в залежності від складності завдання...
57782. Похідна та її застосування 76 KB
  Мета проекту: показати широке застосування похідної; довести що похідна засіб дослідження процесів дійсності і сучасного виробництва; розвивати вміння досліджувати систематизувати вивчені факти...
57783. Применение производной к исследованию функции 1.89 MB
  Цели урока: сформировать навыки исследования и построения графиков функции с помощью производной. Учитель записывает на доске а ученики в тетради: Применение производной при исследовании функции.