9908

Определение амплитуд и частот колебаний аппаратов химических технологий

Практическая работа

Физика

Определение амплитуд и частот колебаний аппаратов химических технологий. Цель работы.Известно,что в процессе эксплуатации различных химических аппаратов, трубопроводов и приборов появляются всевозможные вибрации (колебания). ...

Русский

2013-03-18

262.5 KB

1 чел.

Определение амплитуд и частот колебаний аппаратов химических технологий.

Цель работы. Известно, что в процессе эксплуатации различных химических аппаратов, трубопроводов  и  приборов появляются всевозможные вибрации (колебания). Если частоты этих колебаний совпадут с резонансными, а их амплитуды окажутся достаточно велики, то может произойти  частичное или полное разрушение аппарата. В результате  возможны немалые экономические потери, а также травмы и человеческие жертвы. Чтобы избежать подобного развития событий, целесообразно выполнить предварительные математические расчеты, связанные анализом сложных колебаний, воздействующих на аппараты, разложение этих колебаний на гармонические составляющие и сравнение их с резонансными частотами.

            Теоретические положения. Пусть на отрезке    задана некоторая функция   . Осуществляя  периодическое продолжение этой функции влево и вправо по оси   , получим периодическую функцию .   Так как   -  функция  периода ( полупериод), кусочно-монотонная на отрезке    , то ее можно разложить в ряд Фурье для произвольного отрезка   :

,                        (1)

где и   - коэффициенты Фурье, определяемые по формулам:

,                                        (2)

,                             (3)                              

.                              (4)

При решении различных технических и научных задач имеют место частные случаи , а именно, когда исходная функция четная, т.е.  и, когда эта функция нечетная, т.е. . Отсюда  следует, что график четной функции симметричен относительно оси ординат, а нечетной – симметричен относительно начала координат. Для нас в данных случаях важным является то, что ряд Фурье (1) существенно упрощается. Так, для четной функции он принимает вид:

,                                (5)

где

,                                        (6)

.                              (7)

Т.е. состоит из свободного члена и косинусоидальной части.

Соответственно, ряд Фурье для  нечетной функции записывается как:

      ,                                  (8)

где

                                (9)

и состоит, таким образом, только из синусоидальной части.

Возможен вариант графика , когда функция вроде бы не является ни четной, ни нечетной, однако в результате параллельного перемещения рисунка вдоль оси   вверх или вниз на величину   , он становится нечетным относительно новой оси. Такой график будем называть условно-нечетным. Ряд Фурье для него будет иметь вид:

   ,                               (10)

причем

,                                           (11)

а

,                                 (12)

т.е. коэффициенты и   вычисляются по общим формулам  (2) и (4).

            Порядок выполнения работы.   

- переписать уравнение предполагаемого колебания, воздействующего на химический аппарат - , заданный отрезок и дополнительное условие (если оно имеется),

- изобразить исходную функцию на рисунке, при этом возможны два варианта:

     1)  если уравнение задано на отрезке , то сделать первый рисунок для заданного отрезка -  это будет функция   ,

           используя дополнительное условие, построить на втором рисунке функцию    для симметричного интервала ,

      2) если уравнение задано на отрезке , то сразу сделать рисунок для    ,

- на следующем рисунке изобразить периодическую функцию   , добавив слева и справа от по одному периоду,

- исходя из графика   , записать ряд Фурье в виде:

   (5), если функция четная,

   (8), если функция нечетная,

  (10), если функция условно-нечетная,

во всех случаях принять   n=5,

- записать выражения для коэффициентов Фурье в виде:

    (6), (7), если функция четная,

    (9), если функция нечетная,

    (11), (12), если функция условно-нечетная,

- вычислить в  MathCad  все требуемые коэффициенты с точностью   , дополнительно посчитав еще   или   численным методом  Симпсона,

- записать конкретное разложение функции   в ряд Фурье, подставив в формулы (5), (8) или (10) числовые значения,

- выписать выражения для пяти частичных сумм полученного ряда:

       ,

- в Excel  посчитать значения всех функций   , а также теоретический график   для 21 точки аргумента в пределах   ,

- сделать 6 рисунков - и один под другим, в одном масштабе,

    Примечание. Рисунки удобно разместить следующим образом:

                            Лист 1 -      и   ,

           Лист 2 -  ,

                            Лист 3 -    ,

                            Лист 4 -   

- сделать вывод по работе в следующем виде:

    “На химический аппарат воздействует сложное механическое колебание

                        = (привести полученную формулу),

которое порождает гармоники с амплитудами и частотами, равными: “

 

             

  Варианты исходных данных.  Все варианты разделены  на  две группы в зависимости от исходного интервала:

а) задан отрезок функции    на интервале  и дополнительное условие  или   . Используя  это дополнительное условие,  требуется вначале достроить график на весь симметричный интервале ,

б) задан отрезок функции    на симметричном  интервале .

Отрезок функции  

Интервал

Дополнительное условие

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

           Пример расчета.   

  1.  Дано. Отрезок функции

, ,   .

  

  1.   Построим: 
    1.  график заданной функции на интервале [-π;π]:

  1.  график периодической функции    :

III. Конкретизация ряда Фурье.

Так как fт (х) – четная функция, то ряд имеет вид:

.     При n = 5 и  l = π, имеем :    

  1.  Коэффициенты и ряд Фурье.
  2.  Вычислим коэффициенты Фурье, пользуясь формулами:

т. е.

  1.  Коэффициент  а3   найдем численным методом Симпсона.

Формула Симпсона имеет  

   вид:

      

       

Выберем    

  шаг:

               

3) Значения функции в заданных точках уi = f (xi) = - cos (xi/2) · cos (3xi)

X0

x1

x2

x3

x4

x5

x6

x7

x8

x9

х10

0

π/10

π/5

/10

/5

π/2

/5

/10

/5

/10

π

Y0

y1

y2

y3

y4

y5

y6

y7

y8

y9

у10

-1

-0,581

0,294

0,847

0,655

0

-0,476

-0,432

-0,095

0,092

0

В итоге получаем:

4) Разложение в ряд  Фурье заданной функции

  1.  Выпишем выражения для 5 первых частичных сумм.

  1.  Найдем амплитуды и частоты гармонических колебаний.

Амплитуды:   Частоты:

   

   

   

   

   


 

А также другие работы, которые могут Вас заинтересовать

44976. Автоколебания нелинейных САУ. Определение параметров автоколебаний 420 KB
  эти параметры могут быть найдены если известны условия при которых система находится на границе устойчивости. Для определения границы устойчивости можно использовать существующие критерии устойчивости для линейных САУ. Критерий Найквиста: Если разомкнутая цепь системы устойчива то для устойчивости замкнутой системы н. Необходимым условием устойчивости явл.
44977. Методы линеаризации нелинейных САУ 1.05 MB
  Методы линеаризации нелинейных САУ. НСдинамика кх описывается нелинми диф урми это сисмы имеющие нелинейную стстю харку. Нелинейность обусловлена нелинейностью статической характеристики одного из элементов системы. Методы линеаризации нелинейных САУ.
44978. Случайные процессы 269.5 KB
  В ряде систем для изучения отдельных звеньев системы применяется специальный ввод в систему случайных воздействий. Среднее значение mft и myt являются не случайными значениями и они связаны между собой через передаточную функцию системы. Ry = M[ytyt] Чтобы получить искомое выражение для искомой функции выходные величины по искомой функции входные воздействия воспользуемся связью между входной и выходной величиной системы через её весовую функцию. Эту связь можно выразить через передаточную функцию системы.
44979. Оптимальное управление. Постановка задачи оптимального управления. Критерии оптимальности 269 KB
  Постановка задачи оптимального управления. К настоящему времени наибольшее развитие получили 2 направления в теории оптимальности систем: 1 Теория оптимального управления движением систем с полной информацией об объекте и возмущениях; Теории оптимального управления при случайных возмущениях. Для реализации оптимального управления необходимо: Определить цель управления. Изучить все состояния среды функционирования объекта влияющие на прошлое настоящее и будущее процесса управления.
44980. Аналитическое конструирование регуляторов. Постановка задачи 224 KB
  При исследовании качества переходных в линейных САУ вводились разлитые интегральные критерии качества с помощью которых оценивался переходной процесс на бесконечном интервале времени. При рассмотрении интегральных критериев качества мы убедились в том что эти критерии позволяют определить параметры регулятора если задана его структура. Можно поставить более общую задачу: найти закон регулирования аналитическую функцию связывающую управляющую координату и управляющее воздействие при этом доставляющее min интегральному критерию качества.
44981. Методы теории оптимального управления 26 KB
  Методы теории оптимального управления В тех=их задачах на управление накладывается ограничения по энергетическим ресурсам и ограничения на фазовые координаты из соображения прочности и безопасности. Можно выделить 4 основных метода вариц. Исчисления кые испся для решения задач оптимального управления: Применение урия Эйлера Принцип максимума Динамическое программирование Нелинейное программирование Прямой вариционный метод. Основное применение метода испго урие Эйлера это задачи где экстремалями явлся гладкие фии а...
44982. Адаптивные системы управления. Классификация адаптивных САУ 799 KB
  Адаптивные системы управления. АСАУ могут рассматриваться как сисмы с элементами искусственного интилекта. Назначение АСАУ состоит в том чтобы заменить человекаоператора при принятии решений об улучшении характеристик сис. Оптимальное уприе такими объектами возможно с помощью сис.
44983. Принцип управления. Классификация систем управления 153 KB
  Принцип управления. Классификация систем управления. Существует фундаментальный принцип управления. Мы формируем алгоритм управления формирование управляющего воздействия на ОР.
44984. Алгоритмы и законы регулирования 44 KB
  Алгоритмы и законы регулирования Совокупность предписаний по которым формируется управляющее воздействие на объект регулирования назыв. законом регулирования упр.