993

Методы поиска минимума функции на отрезке. Программная реализация

Курсовая

Информатика, кибернетика и программирование

Нахождение минимума функции на заданном отрезке - одна из простейших задач в разделе численных методов анализа. Существует множество различных способов определения минимума функции с разным количеством итераций и уровнем определения точности. Так же возможно комбинировать некоторые способы для достижения большей эффективности алгоритма.

Русский

2013-01-06

579.5 KB

287 чел.

Санкт-Петербургский

Государственный Университет

Факультет Прикладной Математики - Процессов Управления

Курсовая работа по технологии программирования

на тему: “ Методы поиска минимума функции на отрезке. Программная реализация”

                    

                                        Выполнил:

студент 1 курса 161 группы

Жуков Н.К.

                                 Руководитель:

Кривцов А.Н.

Санкт-Петербург. 2007г.

Содеожание:

  1.  Введение…………………………………………………………………. стр.3
  2.  Метод пассивного поиска...……………………………………………...стр.4
  3.  Метод половинного деления (дихотомии)……………………………...стр.5
  4.  Метод золотого сечения …………………………………………………стр.6
  5.  Метод Фибоначчи…………………………………………………………стр.8
  6.  Метод парабол…………...……………………………………………… стр.10
  7.  Таблицы промежуточных значений…………………………………….стр.12
  8.  Заключение……………………………………………………………….стр.18
  9.  Список литературы……………………………………………………….стр.19
  10.   Приложение………………………………………………………………стр.20

Введение

Нахождение минимума функции на заданном отрезке -  одна из простейших задач в разделе численных методов анализа. Существует множество различных способов определения минимума функции с разным количеством итераций и уровнем определения точности. Так же возможно комбинировать некоторые способы для достижения большей эффективности алгоритма. В этой работе будет рассмотрено пять классических примеров нахождения минимума функции: метод пассивного поиска, дихотомии, золотого сечения, Фибоначчи, и метод парабол. Нам предстоит выяснить какой же из этих способов наиболее эффективен при конкретной задаче.

Метод пассивного поиска

Метод половинного деления (дихотомии)

Метод золотого сечения

Метод Фибоначчи

Метод парабол

Существенное уменьшение числа итераций для вычислений минимума с высокой точностью даёт метод парабол. Хотя он и является наиболее трудоёмким в расчётах и выполнении, при использовании этого метода число шагов оказывается меньше, чем у остальных методов поиска.

Цель этого метода – найти параболу, максимально близко проходящую от графика исследуемой функции вблизи точки, подозрительной на минимум. Найти минимум функции, графиком которой является парабола, намного проще, чем для более сложных функций: минимум параболы совпадает с её вершиной, а вершину параболы совсем нетрудно найти с помощью средств математического анализа.

В этом методе парабола будет проходить через три заданные точки: любые близкие к минимуму точки из предыдущих методов. Сравнивая значения в точках экстремума параболы, можно предположить, какой из них наиболее близок к точке, в которой функция имеет минимальное на отрезке значение.

Каждое последующее приближение можно вычислять по формулам, приведённым ниже:

где  - три точки приближения

Мы будем строить параболу, соответствующую графику функции , начальные значения С0, С1, С2 могут быть вычислены по формулам:

где  - три точки приближения. Равенства имеют место в силу теоремы о среднем Лагранжа и выбора точек, через которые пройдёт парабола.

Метод пассивного поиска

 -----------------------------

 Ит|         x        |

  0 | -5.000  |  28.413159 |

  1 | -4.990  |  27.674924 |

  2 | -4.980  |  26.948390 |

  3 | -4.970  |  26.233414 |

  4 | -4.960  |  25.529860 |

  5 | -4.950  |  24.837589 |

  6 | -4.940  |  24.156466 |

  7 | -4.930  |  23.486355 |

  8 | -4.920  |  22.827125 |

  9 | -4.910  |  22.178643 |

 10 | -4.900  |  21.540780 |

 11 | -4.890  |  20.913405 |

 12 | -4.880  |  20.296392 |

 13 | -4.870  |  19.689614 |

 14 | -4.860  |  19.092946 |

 15 | -4.850  |  18.506265 |

 16 | -4.840  |  17.929448 |

 17 | -4.830  |  17.362374 |

 18 | -4.820  |  16.804923 |

 19 | -4.810  |  16.256977 |

 20 | -4.800  |  15.718418 |

 21 | -4.790  |  15.189130 |

 22 | -4.780  |  14.668998 |

 23 | -4.770  |  14.157909 |

 24 | -4.760  |  13.655750 |

 25 | -4.750  |  13.162410 |

 26 | -4.740  |  12.677778 |

 27 | -4.730  |  12.201745 |

 28 | -4.720  |  11.734205 |

 29 | -4.710  |  11.275049 |

 30 | -4.700  |  10.824172 |

 31 | -4.690  |  10.381471 |

 32 | -4.680  |  9.946841 |

 33 | -4.670  |  9.520179 |

 34 | -4.660  |  9.101386 |

 35 | -4.650  |  8.690361 |

 36 | -4.640  |  8.287004 |

 37 | -4.630  |  7.891217 |

 38 | -4.620  |  7.502904 |

 39 | -4.610  |  7.121969 |

 40 | -4.600  |  6.748316 |

 41 | -4.590  |  6.381851 |

 42 | -4.580  |  6.022482 |

 43 | -4.570  |  5.670117 |

 44 | -4.560  |  5.324664 |

 45 | -4.550  |  4.986033 |

 46 | -4.540  |  4.654136 |

 

47 | -4.530  |  4.328884 |

 48 | -4.520  |  4.010190 |

 49 | -4.510  |  3.697968 |

 50 | -4.500  |  3.392131 |

 51 | -4.490  |  3.092597 |

 52 | -4.480  |  2.799281 |

 53 | -4.470  |  2.512100 |

 54 | -4.460  |  2.230973 |

 55 | -4.450  |  1.955819 |

 56 | -4.440  |  1.686558 |

 57 | -4.430  |  1.423110 |

 58 | -4.420  |  1.165397 |

 59 | -4.410  |  0.913343 |

 60 | -4.400  |  0.666869 |

 61 | -4.390  |  0.425900 |

 62 | -4.380  |  0.190361 |

 63 | -4.370  |  -0.039821 |

 64 | -4.360  |  -0.264722 |

 65 | -4.350  |  -0.484412 |

 66 | -4.340  |  -0.698965 |

 67 | -4.330  |  -0.908450 |

 68 | -4.320  |  -1.112940 |

 69 | -4.310  |  -1.312502 |

 70 | -4.300  |  -1.507206 |

 71 | -4.290  |  -1.697121 |

 72 | -4.280  |  -1.882312 |

 73 | -4.270  |  -2.062847 |

 74 | -4.260  |  -2.238793 |

 75 | -4.250  |  -2.410213 |

 76 | -4.240  |  -2.577172 |

 77 | -4.230  |  -2.739735 |

 78 | -4.220  |  -2.897964 |

 79 | -4.210  |  -3.051921 |

 80 | -4.200  |  -3.201669 |

 81 | -4.190  |  -3.347268 |

 82 | -4.180  |  -3.488779 |

 83 | -4.170  |  -3.626261 |

 84 | -4.160  |  -3.759773 |

 85 | -4.150  |  -3.889375 |

 86 | -4.140  |  -4.015123 |

 87 | -4.130  |  -4.137074 |

 88 | -4.120  |  -4.255286 |

 89 | -4.110  |  -4.369813 |

 90 | -4.100  |  -4.480712 |

 91 | -4.090  |  -4.588037 |

 92 | -4.080  |  -4.691842 |

 93 | -4.070  |  -4.792180 |

 94 | -4.060  |  -4.889105 |

 95 | -4.050  |  -4.982668 |

 96 | -4.040  |  -5.072921 |

 97 | -4.030  |  -5.159916 |

 

98 | -4.020  |  -5.243702 |

 99 | -4.010  |  -5.324330 |

100 | -4.000  |  -5.401850 |

101 | -3.990  |  -5.476310 |

102 | -3.980  |  -5.547758 |

103 | -3.970  |  -5.616242 |

104 | -3.960  |  -5.681810 |

105 | -3.950  |  -5.744508 |

106 | -3.940  |  -5.804383 |

107 | -3.930  |  -5.861479 |

108 | -3.920  |  -5.915843 |

109 | -3.910  |  -5.967519 |

110 | -3.900  |  -6.016551 |

111 | -3.890  |  -6.062982 |

112 | -3.880  |  -6.106857 |

113 | -3.870  |  -6.148217 |

114 | -3.860  |  -6.187105 |

115 | -3.850  |  -6.223562 |

116 | -3.840  |  -6.257630 |

117 | -3.830  |  -6.289349 |

118 | -3.820  |  -6.318760 |

119 | -3.810  |  -6.345902 |

120 | -3.800  |  -6.370816 |

121 | -3.790  |  -6.393539 |

122 | -3.780  |  -6.414110 |

123 | -3.770  |  -6.432568 |

124 | -3.760  |  -6.448950 |

125 | -3.750  |  -6.463293 |

126 | -3.740  |  -6.475634 |

127 | -3.730  |  -6.486009 |

128 | -3.720  |  -6.494454 |

129 | -3.710  |  -6.501004 |

130 | -3.700  |  -6.505696 |

131 | -3.690  |  -6.508562 |

132 | -3.680  |  -6.509638 |

133 | -3.670  |  -6.508957 |

134 | -3.660  |  -6.506553 |

135 | -3.650  |  -6.502459 |

136 | -3.640  |  -6.496707 |

137 | -3.630  |  -6.489330 |

138 | -3.620  |  -6.480360 |

139 | -3.610  |  -6.469828 |

140 | -3.600  |  -6.457766 |

141 | -3.590  |  -6.444203 |

142 | -3.580  |  -6.429171 |

143 | -3.570  |  -6.412700 |

144 | -3.560  |  -6.394819 |

145 | -3.550  |  -6.375558 |

146 | -3.540  |  -6.354945 |

147 | -3.530  |  -6.333009 |

148 | -3.520  |  -6.309780 |

149 | -3.510  |  -6.285283 |

150 | -3.500  |  -6.259548 |

151 | -3.490  |  -6.232601 |

152 | -3.480  |  -6.204470 |

153 | -3.470  |  -6.175181 |

154 | -3.460  |  -6.144759 |

155 | -3.450  |  -6.113233 |

156 | -3.440  |  -6.080626 |

157 | -3.430  |  -6.046964 |

158 | -3.420  |  -6.012273 |

159 | -3.410  |  -5.976577 |

160 | -3.400  |  -5.939900 |

161 | -3.390  |  -5.902267 |

162 | -3.380  |  -5.863701 |

163 | -3.370  |  -5.824226 |

164 | -3.360  |  -5.783865 |

165 | -3.350  |  -5.742641 |

166 | -3.340  |  -5.700577 |

167 | -3.330  |  -5.657695 |

168 | -3.320  |  -5.614017 |

169 | -3.310  |  -5.569566 |

170 | -3.300  |  -5.524361 |

171 | -3.290  |  -5.478425 |

172 | -3.280  |  -5.431779 |

173 | -3.270  |  -5.384444 |

174 | -3.260  |  -5.336439 |

175 | -3.250  |  -5.287785 |

176 | -3.240  |  -5.238502 |

177 | -3.230  |  -5.188610 |

178 | -3.220  |  -5.138128 |

179 | -3.210  |  -5.087075 |

180 | -3.200  |  -5.035470 |

181 | -3.190  |  -4.983332 |

182 | -3.180  |  -4.930678 |

183 | -3.170  |  -4.877529 |

184 | -3.160  |  -4.823900 |

185 | -3.150  |  -4.769810 |

186 | -3.140  |  -4.715277 |

187 | -3.130  |  -4.660317 |

188 | -3.120  |  -4.604948 |

189 | -3.110  |  -4.549187 |

190 | -3.100  |  -4.493049 |

191 | -3.090  |  -4.436551 |

192 | -3.080  |  -4.379710 |

193 | -3.070  |  -4.322540 |

194 | -3.060  |  -4.265059 |

195 | -3.050  |  -4.207281 |

196 | -3.040  |  -4.149221 |

197 | -3.030  |  -4.090894 |

198 | -3.020  |  -4.032316 |

199 | -3.010  |  -3.973501 |

200 | -3.000  |  -3.914463 |

201 | -2.990  |  -3.855217 |

202 | -2.980  |  -3.795775 |

203 | -2.970  |  -3.736153 |

204 | -2.960  |  -3.676364 |

205 | -2.950  |  -3.616421 |

206 | -2.940  |  -3.556338 |

207 | -2.930  |  -3.496127 |

208 | -2.920  |  -3.435801 |

209 | -2.910  |  -3.375372 |

210 | -2.900  |  -3.314855 |

211 | -2.890  |  -3.254259 |

212 | -2.880  |  -3.193599 |

213 | -2.870  |  -3.132885 |

214 | -2.860  |  -3.072129 |

215 | -2.850  |  -3.011343 |

216 | -2.840  |  -2.950538 |

217 | -2.830  |  -2.889726 |

218 | -2.820  |  -2.828917 |

219 | -2.810  |  -2.768123 |

220 | -2.800  |  -2.707353 |

221 | -2.790  |  -2.646619 |

222 | -2.780  |  -2.585931 |

223 | -2.770  |  -2.525299 |

224 | -2.760  |  -2.464733 |

225 | -2.750  |  -2.404243 |

226 | -2.740  |  -2.343839 |

227 | -2.730  |  -2.283530 |

228 | -2.720  |  -2.223326 |

229 | -2.710  |  -2.163235 |

230 | -2.700  |  -2.103268 |

231 | -2.690  |  -2.043433 |

232 | -2.680  |  -1.983739 |

233 | -2.670  |  -1.924194 |

234 | -2.660  |  -1.864807 |

235 | -2.650  |  -1.805586 |

236 | -2.640  |  -1.746540 |

237 | -2.630  |  -1.687677 |

238 | -2.620  |  -1.629004 |

239 | -2.610  |  -1.570530 |

240 | -2.600  |  -1.512262 |

241 | -2.590  |  -1.454207 |

242 | -2.580  |  -1.396374 |

243 | -2.570  |  -1.338769 |

244 | -2.560  |  -1.281399 |

245 | -2.550  |  -1.224271 |

246 | -2.540  |  -1.167393 |

247 | -2.530  |  -1.110771 |

248 | -2.520  |  -1.054411 |

249 | -2.510  |  -0.998321 |

250 | -2.500  |  -0.942506 |

251 | -2.490  |  -0.886973 |

252 | -2.480  |  -0.831728 |

253 | -2.470  |  -0.776776 |

254 | -2.460  |  -0.722124 |

255 | -2.450  |  -0.667778 |

256 | -2.440  |  -0.613743 |

257 | -2.430  |  -0.560025 |

258 | -2.420  |  -0.506629 |

259 | -2.410  |  -0.453560 |

260 | -2.400  |  -0.400824 |

261 | -2.390  |  -0.348425 |

262 | -2.380  |  -0.296369 |

263 | -2.370  |  -0.244661 |

264 | -2.360  |  -0.193305 |

265 | -2.350  |  -0.142305 |

266 | -2.340  |  -0.091667 |

267 | -2.330  |  -0.041395 |

268 | -2.320  |  0.008506 |

269 | -2.310  |  0.058034 |

270 | -2.300  |  0.107182 |

271 | -2.290  |  0.155949 |

272 | -2.280  |  0.204328 |

273 | -2.270  |  0.252318 |

274 | -2.260  |  0.299913 |

275 | -2.250  |  0.347111 |

276 | -2.240  |  0.393907 |

277 | -2.230  |  0.440299 |

278 | -2.220  |  0.486283 |

279 | -2.210  |  0.531855 |

280 | -2.200  |  0.577013 |

281 | -2.190  |  0.621754 |

282 | -2.180  |  0.666074 |

283 | -2.170  |  0.709971 |

284 | -2.160  |  0.753442 |

285 | -2.150  |  0.796483 |

286 | -2.140  |  0.839094 |

287 | -2.130  |  0.881270 |

288 | -2.120  |  0.923009 |

289 | -2.110  |  0.964310 |

290 | -2.100  |  1.005170 |

291 | -2.090  |  1.045586 |

292 | -2.080  |  1.085557 |

293 | -2.070  |  1.125080 |

294 | -2.060  |  1.164154 |

295 | -2.050  |  1.202776 |

296 | -2.040  |  1.240945 |

297 | -2.030  |  1.278659 |

298 | -2.020  |  1.315917 |

299 | -2.010  |  1.352716 |

300 | -2.000  |  1.389056 |

301 | -1.990  |  1.424935 |

302 | -1.980  |  1.460351 |

303 | -1.970  |  1.495303 |

304 | -1.960  |  1.529791 |

305 | -1.950  |  1.563813 |

306 | -1.940  |  1.597367 |

307 | -1.930  |  1.630453 |

308 | -1.920  |  1.663070 |

309 | -1.910  |  1.695218 |

310 | -1.900  |  1.726894 |

311 | -1.890  |  1.758100 |

312 | -1.880  |  1.788833 |

313 | -1.870  |  1.819093 |

314 | -1.860  |  1.848881 |

315 | -1.850  |  1.878195 |

316 | -1.840  |  1.907034 |

317 | -1.830  |  1.935400 |

318 | -1.820  |  1.963290 |

319 | -1.810  |  1.990706 |

320 | -1.800  |  2.017647 |

321 | -1.790  |  2.044113 |

322 | -1.780  |  2.070104 |

323 | -1.770  |  2.095620 |

324 | -1.760  |  2.120661 |

325 | -1.750  |  2.145228 |

326 | -1.740  |  2.169319 |

327 | -1.730  |  2.192937 |

328 | -1.720  |  2.216080 |

329 | -1.710  |  2.238750 |

330 | -1.700  |  2.260947 |

331 | -1.690  |  2.282672 |

332 | -1.680  |  2.303924 |

333 | -1.670  |  2.324705 |

334 | -1.660  |  2.345015 |

335 | -1.650  |  2.364855 |

336 | -1.640  |  2.384226 |

337 | -1.630  |  2.403128 |

338 | -1.620  |  2.421562 |

339 | -1.610  |  2.439530 |

340 | -1.600  |  2.457032 |

341 | -1.590  |  2.474070 |

342 | -1.580  |  2.490644 |

343 | -1.570  |  2.506755 |

344 | -1.560  |  2.522405 |

345 | -1.550  |  2.537595 |

346 | -1.540  |  2.552326 |

347 | -1.530  |  2.566600 |

348 | -1.520  |  2.580417 |

349 | -1.510  |  2.593780 |

350 | -1.500  |  2.606689 |

351 | -1.490  |  2.619147 |

352 | -1.480  |  2.631154 |

353 | -1.470  |  2.642712 |

354 | -1.460  |  2.653824 |

355 | -1.450  |  2.664490 |

356 | -1.440  |  2.674712 |

357 | -1.430  |  2.684492 |

358 | -1.420  |  2.693832 |

359 | -1.410  |  2.702734 |

360 | -1.400  |  2.711200 |

361 | -1.390  |  2.719231 |

362 | -1.380  |  2.726830 |

363 | -1.370  |  2.733998 |

364 | -1.360  |  2.740737 |

365 | -1.350  |  2.747051 |

366 | -1.340  |  2.752940 |

367 | -1.330  |  2.758406 |

368 | -1.320  |  2.763453 |

369 | -1.310  |  2.768083 |

370 | -1.300  |  2.772297 |

371 | -1.290  |  2.776098 |

372 | -1.280  |  2.779488 |

373 | -1.270  |  2.782470 |

374 | -1.260  |  2.785045 |

375 | -1.250  |  2.787218 |

376 | -1.240  |  2.788989 |

377 | -1.230  |  2.790363 |

378 | -1.220  |  2.791340 |

379 | -1.210  |  2.791924 |

380 | -1.200  |  2.792117 |

381 | -1.190  |  2.791922 |

382 | -1.180  |  2.791342 |

383 | -1.170  |  2.790380 |

384 | -1.160  |  2.789037 |

385 | -1.150  |  2.787318 |

386 | -1.140  |  2.785224 |

387 | -1.130  |  2.782760 |

388 | -1.120  |  2.779926 |

389 | -1.110  |  2.776727 |

390 | -1.100  |  2.773166 |

391 | -1.090  |  2.769245 |

392 | -1.080  |  2.764968 |

393 | -1.070  |  2.760336 |

394 | -1.060  |  2.755355 |

395 | -1.050  |  2.750026 |

396 | -1.040  |  2.744353 |

397 | -1.030  |  2.738339 |

398 | -1.020  |  2.731987 |

399 | -1.010  |  2.725300 |

400 | -1.000  |  2.718282 |

401 | -0.990  |  2.710935 |

402 | -0.980  |  2.703264 |

403 | -0.970  |  2.695271 |

404 | -0.960  |  2.686960 |

405 | -0.950  |  2.678335 |

406 | -0.940  |  2.669397 |

407 | -0.930  |  2.660152 |

408 | -0.920  |  2.650602 |

409 | -0.910  |  2.640752 |

410 | -0.900  |  2.630603 |

411 | -0.890  |  2.620161 |

412 | -0.880  |  2.609428 |

413 | -0.870  |  2.598408 |

414 | -0.860  |  2.587105 |

415 | -0.850  |  2.575522 |

416 | -0.840  |  2.563663 |

417 | -0.830  |  2.551532 |

418 | -0.820  |  2.539132 |

419 | -0.810  |  2.526467 |

420 | -0.800  |  2.513541 |

421 | -0.790  |  2.500357 |

422 | -0.780  |  2.486920 |

423 | -0.770  |  2.473233 |

424 | -0.760  |  2.459300 |

425 | -0.750  |  2.445125 |

426 | -0.740  |  2.430712 |

427 | -0.730  |  2.416064 |

428 | -0.720  |  2.401185 |

429 | -0.710  |  2.386080 |

430 | -0.700  |  2.370753 |

431 | -0.690  |  2.355207 |

432 | -0.680  |  2.339446 |

433 | -0.670  |  2.323474 |

434 | -0.660  |  2.307296 |

435 | -0.650  |  2.290916 |

436 | -0.640  |  2.274337 |

437 | -0.630  |  2.257564 |

438 | -0.620  |  2.240600 |

439 | -0.610  |  2.223450 |

440 | -0.600  |  2.206119 |

441 | -0.590  |  2.188609 |

442 | -0.580  |  2.170926 |

443 | -0.570  |  2.153074 |

444 | -0.560  |  2.135057 |

445 | -0.550  |  2.116878 |

446 | -0.540  |  2.098543 |

447 | -0.530  |  2.080055 |

448 | -0.520  |  2.061420 |

449 | -0.510  |  2.042640 |

450 | -0.500  |  2.023721 |

451 | -0.490  |  2.004667 |

452 | -0.480  |  1.985482 |

453 | -0.470  |  1.966171 |

454 | -0.460  |  1.946738 |

455 | -0.450  |  1.927187 |

456 | -0.440  |  1.907523 |

457 | -0.430  |  1.887751 |

458 | -0.420  |  1.867874 |

459 | -0.410  |  1.847897 |

460 | -0.400  |  1.827825 |

461 | -0.390  |  1.807662 |

462 | -0.380  |  1.787413 |

463 | -0.370  |  1.767082 |

464 | -0.360  |  1.746673 |

465 | -0.350  |  1.726193 |

466 | -0.340  |  1.705644 |

467 | -0.330  |  1.685031 |

468 | -0.320  |  1.664360 |

469 | -0.310  |  1.643634 |

470 | -0.300  |  1.622859 |

471 | -0.290  |  1.602038 |

472 | -0.280  |  1.581178 |

473 | -0.270  |  1.560281 |

474 | -0.260  |  1.539354 |

475 | -0.250  |  1.518400 |

476 | -0.240  |  1.497425 |

477 | -0.230  |  1.476433 |

478 | -0.220  |  1.455429 |

479 | -0.210  |  1.434417 |

480 | -0.200  |  1.413403 |

481 | -0.190  |  1.392391 |

482 | -0.180  |  1.371385 |

483 | -0.170  |  1.350392 |

484 | -0.160  |  1.329415 |

485 | -0.150  |  1.308459 |

486 | -0.140  |  1.287530 |

487 | -0.130  |  1.266631 |

488 | -0.120  |  1.245769 |

489 | -0.110  |  1.224947 |

490 | -0.100  |  1.204171 |

491 | -0.090  |  1.183445 |

492 | -0.080  |  1.162775 |

493 | -0.070  |  1.142165 |

494 | -0.060  |  1.121621 |

495 | -0.050  |  1.101146 |

496 | -0.040  |  1.080747 |

497 | -0.030  |  1.060428 |

498 | -0.020  |  1.040193 |

499 | -0.010  |  1.020049 |

500 | -0.000  |  1.000000 |

501 |  0.010  |  0.980051 |

502 |  0.020  |  0.960207 |

503 |  0.030  |  0.940473 |

504 |  0.040  |  0.920853 |

505 |  0.050  |  0.901354 |

506 |  0.060  |  0.881981 |

507 |  0.070  |  0.862737 |

508 |  0.080  |  0.843628 |

509 |  0.090  |  0.824660 |

510 |  0.100  |  0.805837 |

511 |  0.110  |  0.787165 |

512 |  0.120  |  0.768648 |

513 |  0.130  |  0.750292 |

514 |  0.140  |  0.732102 |

515 |  0.150  |  0.714083 |

516 |  0.160  |  0.696240 |

517 |  0.170  |  0.678578 |

518 |  0.180  |  0.661102 |

519 |  0.190  |  0.643818 |

520 |  0.200  |  0.626731 |

521 |  0.210  |  0.609845 |

522 |  0.220  |  0.593167 |

523 |  0.230  |  0.576701 |

524 |  0.240  |  0.560452 |

525 |  0.250  |  0.544426 |

526 |  0.260  |  0.528628 |

527 |  0.270  |  0.513062 |

528 |  0.280  |  0.497736 |

529 |  0.290  |  0.482653 |

530 |  0.300  |  0.467818 |

531 |  0.310  |  0.453238 |

532 |  0.320  |  0.438917 |

533 |  0.330  |  0.424861 |

534 |  0.340  |  0.411074 |

535 |  0.350  |  0.397563 |

536 |  0.360  |  0.384332 |

537 |  0.370  |  0.371387 |

538 |  0.380  |  0.358733 |

539 |  0.390  |  0.346376 |

540 |  0.400  |  0.334320 |

541 |  0.410  |  0.322571 |

542 |  0.420  |  0.311135 |

543 |  0.430  |  0.300016 |

544 |  0.440  |  0.289220 |

545 |  0.450  |  0.278753 |

546 |  0.460  |  0.268620 |

547 |  0.470  |  0.258825 |

548 |  0.480  |  0.249375 |

549 |  0.490  |  0.240275 |

550 |  0.500  |  0.231531 |

551 |  0.510  |  0.223147 |

552 |  0.520  |  0.215129 |

553 |  0.530  |  0.207482 |

554 |  0.540  |  0.200212 |

555 |  0.550  |  0.193325 |

556 |  0.560  |  0.186825 |

557 |  0.570  |  0.180718 |

558 |  0.580  |  0.175010 |

559 |  0.590  |  0.169706 |

560 |  0.600  |  0.164812 |

561 |  0.610  |  0.160332 |

562 |  0.620  |  0.156272 |

563 |  0.630  |  0.152639 |

564 |  0.640  |  0.149436 |

565 |  0.650  |  0.146671 |

566 |  0.660  |  0.144347 |

567 |  0.670  |  0.142472 |

568 |  0.680  |  0.141049 |

569 |  0.690  |  0.140085 |

570 |  0.700  |  0.139585 |

571 |  0.710  |  0.139555 |

572 |  0.720  |  0.140000 |

573 |  0.730  |  0.140926 |

574 |  0.740  |  0.142338 |

575 |  0.750  |  0.144242 |

576 |  0.760  |  0.146642 |

577 |  0.770  |  0.149546 |

578 |  0.780  |  0.152958 |

579 |  0.790  |  0.156884 |

580 |  0.800  |  0.161329 |

581 |  0.810  |  0.166299 |

582 |  0.820  |  0.171800 |

583 |  0.830  |  0.177836 |

584 |  0.840  |  0.184415 |

585 |  0.850  |  0.191540 |

586 |  0.860  |  0.199218 |

587 |  0.870  |  0.207455 |

588 |  0.880  |  0.216255 |

589 |  0.890  |  0.225625 |

590 |  0.900  |  0.235570 |

591 |  0.910  |  0.246095 |

592 |  0.920  |  0.257207 |

593 |  0.930  |  0.268911 |

594 |  0.940  |  0.281212 |

595 |  0.950  |  0.294116 |

596 |  0.960  |  0.307629 |

597 |  0.970  |  0.321756 |

598 |  0.980  |  0.336503 |

599 |  0.990  |  0.351876 |

600 |  1.000  |  0.367879 |

601 |  1.010  |  0.384520 |

602 |  1.020  |  0.401803 |

603 |  1.030  |  0.419734 |

604 |  1.040  |  0.438319 |

605 |  1.050  |  0.457563 |

606 |  1.060  |  0.477472 |

607 |  1.070  |  0.498052 |

608 |  1.080  |  0.519308 |

609 |  1.090  |  0.541245 |

610 |  1.100  |  0.563871 |

611 |  1.110  |  0.587190 |

612 |  1.120  |  0.611208 |

613 |  1.130  |  0.635930 |

614 |  1.140  |  0.661363 |

615 |  1.150  |  0.687512 |

616 |  1.160  |  0.714382 |

617 |  1.170  |  0.741980 |

618 |  1.180  |  0.770311 |

619 |  1.190  |  0.799380 |

620 |  1.200  |  0.829194 |

621 |  1.210  |  0.859758 |

622 |  1.220  |  0.891078 |

623 |  1.230  |  0.923160 |

624 |  1.240  |  0.956008 |

625 |  1.250  |  0.989630 |

626 |  1.260  |  1.024030 |

627 |  1.270  |  1.059215 |

628 |  1.280  |  1.095189 |

629 |  1.290  |  1.131960 |

630 |  1.300  |  1.169532 |

631 |  1.310  |  1.207911 |

632 |  1.320  |  1.247103 |

633 |  1.330  |  1.287114 |

634 |  1.340  |  1.327950 |

635 |  1.350  |  1.369615 |

636 |  1.360  |  1.412117 |

637 |  1.370  |  1.455460 |

638 |  1.380  |  1.499651 |

639 |  1.390  |  1.544694 |

640 |  1.400  |  1.590597 |

641 |  1.410  |  1.637364 |

642 |  1.420  |  1.685002 |

643 |  1.430  |  1.733516 |

644 |  1.440  |  1.782912 |

645 |  1.450  |  1.833195 |

646 |  1.460  |  1.884372 |

647 |  1.470  |  1.936448 |

648 |  1.480  |  1.989430 |

649 |  1.490  |  2.043322 |

650 |  1.500  |  2.098130 |

651 |  1.510  |  2.153861 |

652 |  1.520  |  2.210520 |

653 |  1.530  |  2.268113 |

654 |  1.540  |  2.326645 |

655 |  1.550  |  2.386123 |

656 |  1.560  |  2.446552 |

657 |  1.570  |  2.507938 |

658 |  1.580  |  2.570287 |

659 |  1.590  |  2.633605 |

660 |  1.600  |  2.697897 |

661 |  1.610  |  2.763169 |

662 |  1.620  |  2.829427 |

663 |  1.630  |  2.896677 |

664 |  1.640  |  2.964924 |

665 |  1.650  |  3.034175 |

666 |  1.660  |  3.104435 |

667 |  1.670  |  3.175710 |

668 |  1.680  |  3.248006 |

669 |  1.690  |  3.321329 |

670 |  1.700  |  3.395684 |

671 |  1.710  |  3.471077 |

672 |  1.720  |  3.547514 |

673 |  1.730  |  3.625001 |

674 |  1.740  |  3.703544 |

675 |  1.750  |  3.783149 |

676 |  1.760  |  3.863821 |

677 |  1.770  |  3.945566 |

678 |  1.780  |  4.028390 |

679 |  1.790  |  4.112299 |

680 |  1.800  |  4.197299 |

681 |  1.810  |  4.283395 |

682 |  1.820  |  4.370594 |

683 |  1.830  |  4.458901 |

684 |  1.840  |  4.548321 |

685 |  1.850  |  4.638862 |

686 |  1.860  |  4.730529 |

687 |  1.870  |  4.823327 |

688 |  1.880  |  4.917262 |

689 |  1.890  |  5.012341 |

690 |  1.900  |  5.108569 |

691 |  1.910  |  5.205951 |

692 |  1.920  |  5.304495 |

693 |  1.930  |  5.404205 |

694 |  1.940  |  5.505088 |

695 |  1.950  |  5.607149 |

696 |  1.960  |  5.710394 |

697 |  1.970  |  5.814830 |

698 |  1.980  |  5.920461 |

699 |  1.990  |  6.027294 |

700 |  2.000  |  6.135335 |

----------------------------

Итераций: 700

Конечные значения: x=-3.680    y=-6.509638

Метод деления попалам (дихотомии)

--------------------------------------------------

 Итер| (a+b)/2 |F((a+b)/2)|     a      |     b   |

--------------------------------------------------

 1 |-1.500000 |2.606689 | [-5.000000,|2.000000]

 2 |-3.249500 |-5.285336 | [-5.000000,|-1.499000]

 3 |-4.124250 |-4.205499 | [-5.000000,|-3.248500]

 4 |-3.686875 |-6.509089 | [-4.125250,|-3.248500]

 5 |-3.468188 |-6.169750 | [-3.687875,|-3.248500]

 6 |-3.577531 |-6.425237 | [-3.687875,|-3.467188]

 7 |-3.632203 |-6.491094 | [-3.687875,|-3.576531]

 8 |-3.659539 |-6.506401 | [-3.687875,|-3.631203]

 9 |-3.673207 |-6.509365 | [-3.687875,|-3.658539]

10 |-3.680041 |-6.509637 | [-3.687875,|-3.672207]

--------------------------------------------------

Итераций: 10

Конечные значения: x=-3.676624   y=-6.509603

Метод золотого сечения

----------------------------------------------------------

Итер|  (a+b)/2   |  F((a+b)/2) |     a       |     b     |

----------------------------------------------------------

 1 | -1.500000  |  2.606689  | [-5.000000, | 2.000000]|

 2 | -2.836881  |  -2.931572  | [-5.000000, | -0.673762]|

 3 | -3.663119  |  -6.507486  | [-5.000000, | -2.326238]|

 4 | -3.152476  |  -4.783244  | [-3.978714, | -2.326238]|

 5 | -3.468071  |  -6.169399  | [-3.978714, | -2.957428]|

 6 | -3.663119  |  -6.507486  | [-3.978714, | -3.347524]|

 7 | -3.783665  |  -6.406817  | [-3.978714, | -3.588617]|

 8 | -3.709164  |  -6.501468  | [-3.829710, | -3.588617]|

 9 | -3.663119  |  -6.507486  | [-3.737621, | -3.588617]|

10 | -3.691576  |  -6.508230  | [-3.737621, | -3.645531]|

11 | -3.673989  |  -6.509437  | [-3.702446, | -3.645531]|

12 | -3.684858  |  -6.509337  | [-3.702446, | -3.667271]|

13 | -3.678140  |  -6.509643  | [-3.689010, | -3.667271]|

14 | -3.682292  |  -6.509548  | [-3.689010, | -3.675574]|

----------------------------------------------------------

Итераций: 14

Конечные значения: -3.679726  |  -6.509643

Метод Фибоначчи

----------------------------------------------------------

Итер|  (a+b)/2   |  F((a+b)/2) |     a       |     b     |

----------------------------------------------------------

 1 | -1.500000  |  2.606689  | [-5.000000, | 2.000000]|

 2 | -2.836879  |  -2.931562  | [-5.000000, | -0.673759]|

 3 | -3.663121  |  -6.507486  | [-5.000000, | -2.326241]|

 4 | -3.152482  |  -4.783279  | [-3.978723, | -2.326241]|

 5 | -3.468085  |  -6.169442  | [-3.978723, | -2.957447]|

 6 | -3.663121  |  -6.507486  | [-3.978723, | -3.347518]|

 7 | -3.783688  |  -6.406772  | [-3.978723, | -3.588652]|

 8 | -3.709220  |  -6.501437  | [-3.829787, | -3.588652]|

 9 | -3.663121  |  -6.507486  | [-3.737589, | -3.588652]|

10 | -3.691489  |  -6.508249  | [-3.737589, | -3.645390]|

11 | -3.673759  |  -6.509417  | [-3.702128, | -3.645390]|

12 | -3.684397  |  -6.509383  | [-3.702128, | -3.666667]|

13 | -3.677305  |  -6.509626  | [-3.687943, | -3.666667]|

----------------------------------------------------------

Итераций: 13

Конечные значения: x=-3.680851  y=-6.509615

Метод парабол

-------------------------------------------------------------------------------

Итер |      a     |       b       |       c       |      c1       |    f(a)      |     f(b)   

-------------------------------------------------------------------------------

 1| -5.000000|2.000000|-3.680000|-1.111653|28.413159|6.135335|

 2| -5.000000|-1.111653|-3.680000|-2.629593|28.413159|2.777281|

 3| -5.000000|-2.629593|-3.680000|-3.330112|28.413159|-1.685286|

 4| -5.000000|-3.330112|-3.680000|-3.575386|28.413159|-5.658179|

 5| -5.000000|-3.575386|-3.680000|-3.649616|28.413159|-6.421748|

 6| -5.000000|-3.649616|-3.680000|-3.670942|28.413159|-6.502269|

 7| -5.000000|-3.670942|-3.689058|-3.679509|28.413159|-6.509095|

 8| -3.689058|-3.670942|-3.679509|-3.678881|-6.508739|-6.509095|

--------------------------------------------------------------------------------

Итераций:  8

Конечные значения: x=-3.679509  y=-6.509645

Заключение

Одним из первых вопросов, возникающих при поиске минимума, является вопрос эффективности алгоритма. Из рассмотренных алгоритмов с данной задачей лучше остальных справился метод парабол. Ему понадобилось всего 8 итераций для нахождения минимума с точностью 0.01. В то время как самый «медленный» алгоритм –  метод пассивного поиска –  справился с этой же задачей за 700 итераций. 

Список литературы:

  1.  Харчистов Борис Федорович. Методы оптимизации.
  2.  В.А. Буслов, С.Л.Яковлев. Численные методы I. Исследование функций.
  3.  http://alglib.sources.ru/optimization/goldensection.php
  4.  http://alglib.sources.ru/optimization/
  5.  http://elib.ispu.ru/library/math/sem1/kiselev1/node87.html

Приложение

 

Код реализации программы на С++:

// minimum.cpp : main project file.

#include "stdafx.h"

#include "iostream"

#include "conio.h"

#include "math.h"

#include "stdio.h"

using namespace std;

double *method=new double[5]; //массив для числа итераций каждого метода

//////////////////////////////////////////////////////////

//////////определение функции/////////////////////////////

//////////////////////////////////////////////////////////

double F(double x)

{

 return pow(x, 3) - x + exp(-x);

}

//////////////////////////////////////////////////

////////процедура для пассивного поиска///////////

//////////////////////////////////////////////////

void pass(double a, double b, double e, short scr)//создаем функцию с //параметрами a – левый конец отрезка,  b –правый, e -погрешность

{

FILE *ps;

ps=fopen("D://minimum//passive.txt", "w");//создаем текстовый  файл в //который будут записываться выходные данные

 double Ymin=F(a), Xmin=a;

fprintf(ps, "Метод пассивного поиска\n");

fprintf(ps, "-----------------------------\n");

fprintf(ps, " Итер |    Y    |      x     |\n"); //«шапка» таблицы

fprintf(ps, "-----------------------------\n");

 for(double i=a; i<=b; i=i+e) // «пробегаем» отрезок с шагом е

 {

  fprintf(ps, "%4.0f | %6.3f  |  %6.6f |\n", (i-a)/e, i, F(i));// записываем в файл промежуточные значения

  if (F(i)<Ymin)//сравним текущее значение функции с новым

 {

  Ymin=F(i);//если оно  меньше, то оно записывается в переменную Ymin

  Xmin=i;//значение аргумента при данном минимуме

 }

 }

 

fprintf(ps, "----------------------------\n");

fprintf(ps, "\nИтераций:%4.0f\nКонечные значения: x=%6.3f    y=%6.6f", (b-a)/e, Xmin, Ymin);//Запись в файл кол-ва итераций, точку //минимума и зн-е ф-ии в ней

 

 /// если этот метод самый оптимальный, выводим его результаты на экран

 if (scr==1) printf("Kone4nie zna4eni9: x=%6.3f,  y=%6.6f", Xmin, Ymin);

method[0]=floor( (b-a)/e);

}

////////////////////////////////////////////////////////////////

//////////////процедура для метода дихотомии////////////////////

////////////////////////////////////////////////////////////////

void dihotomia(double a, double b, double e,short scr)

{

FILE *dih;

dih=fopen("D://minimum//dih.txt", "w");

 double l=a, m=b; //создаем переменные для значений функции и значений //аргумента

 int iter=1;

fprintf(dih, "Метод деления попалам (дихотомии)\n");

fprintf(dih, "--------------------------------------------------\n");

fprintf(dih, " Итер| (a+b)/2 |F((a+b)/2)|     a      |     b   |\n");

fprintf(dih, "--------------------------------------------------\n");

 while ((b-a)>e)

 {

 fprintf(dih, "%3d |%6.6f |%6.6f | [%6.6f,|%6.6f]\n",iter,(a+b)/2, F((a+b)/2), a, b);// записываем в файл промежуточные значения

 l=(a+b)/2 - e/10;

 m=(a+b)/2 + e/10;

 if (F(l)<F(m))

  b=m;

 else a=l;

 iter++;

  }

fprintf(dih, "--------------------------------------------------\n");

fprintf(dih, "\nИтераций:%3d\nКонечные значения: x=%6.6f   y=%6.6f",iter-1, (a+b)/2, F((a+b)/2));

 /// если этот метод самый оптимальный, выводим его результаты на экран

 if (scr==1) printf( "Kone4nie zna4eni9: x=%6.3f, y=%6.6f", (a+b)/2, F( (a+b)/2 ));

method[1]=iter-1;

}

//////////////////////////////////////////////////////////

//////Процедура для метода золотого сечения //////////////

//////////////////////////////////////////////////////////

void zol_sechenie(double a, double b, double e, short scr)

{

FILE *zol;

zol=fopen("D://minimum//sechenie.txt", "w");

fprintf(zol, "Метод золотого сечения\n");

fprintf(zol, "----------------------------------------------------------\n");

fprintf(zol, "Итер|  (a+b)/2   |  F((a+b)/2) |     a       |     b     |\n");

fprintf(zol, "----------------------------------------------------------\n");

 double fi=sqrt(5.0)/2 - 0.5, l=a+(1-fi)*(b-a), m=a+fi*(b-a), d1=F(l), d2=F(m);

 int iter=1;

 while ((b-a)>e)

  {

   fprintf(zol, "%3d | %6.6f  |  %6.6f  | [%6.6f, | %6.6f]|\n",iter,(a+b)/2, F((a+b)/2), a, b);

   if (d1>d2)

    {

     a=l; l=m; d1=d2;

     m=a+fi*(b-a); d2=F(m);

    }

   else

    {

     b=m; m=l; d2=d;

     l=a+(1-fi)*(b-a); d1=F(l);

    }

   iter++;

  }

fprintf(zol, "----------------------------------------------------------\n");

fprintf(zol, "\nИтераций:%3d\nКонечные значения: %6.6f  |  %6.6f",iter-1, (a+b)/2, F((a+b)/2));

 /// если этот метод самый оптимальный, выводим его результаты на экран

 if (scr==1) printf("Kone4nie zna4eni9: x=%6.6f, y=%6.6f", (a+b)/2, F((a+b)/2));

method[2]=iter-1;

}

///////////////////////////////////////////////////////

//////Процедура для метода Фибоначи ///////////////////

///////////////////////////////////////////////////////

void fibonachi(double a, double b, double e, short scr)

{

FILE *fibo;

fibo=fopen("D://minimum//Fibonachi.txt", "w");

fprintf(fibo, "Метод Фибоначчи\n");

fprintf(fibo, "----------------------------------------------------------\n");

fprintf(fibo, "Итер|  (a+b)/2   |  F((a+b)/2) |     a       |     b     |\n");

fprintf(fibo, "----------------------------------------------------------\n");

 int fib[80]; //массив с числами Фибоначчи

fib[0]=1; fib[1]=1; //в первые два эл-та записываем 1 тк так начин-ся последовательность Фибоначчи

 int i=1;

 while ( (b-a)/e >fib[i])

   {

    i++; fib[i]=fib[i-2] + fib[i-1];

   }

 double l=a+fib[i-2]*(b-a) / fib[i], m=a+fib[i-1]*(b-a)/fib[i], d1=F(l), d2=F(m);

 for (int k=i-1; k>=2; k--)

{

  fprintf(fibo, "%3d | %6.6f  |  %6.6f  | [%6.6f, | %6.6f]|\n",i-k,(a+b)/2, F((a+b)/2), a, b);

  if (d1<d2)

 {

  b=m; m=l; d2=F(l);

  l=a+fib[k-2]*(b-a)/fib[k];

  d1=F(l);

 }

   else

 {

  a=l; l=m; d1=d2;

  m=a+fib[k-1]*(b-a)/fib[k];

  d2=F(m);

 }

}

fprintf(fibo, "----------------------------------------------------------\n");

fprintf(fibo,"\Итераций:%3d\nКонечные значения: x=%6.6f  y=%6.6f",i-2, (a+b)/2, F((a+b)/2));

 /// если этот метод самый оптимальный, выводим его результаты на экран

 if (scr==1) printf("Kone4nie zna4eni9: x=%6.6f, y=%6.6f", (a+b)/2, F((a+b)/2));

method[3]=i-2;

}

//////////////////////////////////////////////

///////Процедура для метода парабол///////////

//////////////////////////////////////////////

void parabola(double a, double b, double e, short scr)

{

 int iter;

FILE *par;

par=fopen("D://minimum//parabola.txt", "w");

fprintf(par, "Метод парабол \n");

fprintf(par, "----------------------------------------------------------------\n");

fprintf(par, "Итер |    a   |    b    |    c    |   c1    |  f(a)   |  f(b)   \n");

fprintf(par, "----------------------------------------------------------------\n");

//Здесь методом пассивного поиска выбирается точка для начала метода парабол

 double min=F(a), x0=a;

 for (double i=a; i<=b; i+=e)

 {

  if (F(i)<min)

   {

    min=F(i);

    x0=i;

   }

 }

//Начнём выбирать по 3 точки, через которые проходит парабола

 double c=x0,c1,x2,x3;

 for (iter=1; (b-a)>e; iter++)

  {

   c1=0.5*( (a+b)*(a-b)*(F(c)-F(b)) - (c+b)*(c-b)*(F(a)-F(b)) ) / ( (a-b)*(F(c)-F(b)) - (c-b)*(F(a)-F(b)) );

   x2=0.5*( (a+b)*(b-a)*(F(a)-F(c)) - (a+c)*(a-c)*(F(b)-F(a)) ) / ( (b-a)*(F(a)-F(c)) - (a-c)*(F(b)-F(a)) );

   x3=0.5*( (c+b)*(c-b)*(F(a)-F(b)) - (a+b)*(a-b)*(F(c)-F(b)) ) / ( (c-b)*(F(a)-F(b)) - (a-b)*(F(c)-F(b)) );

//Найдём минимум параболической функции (у параболы два экстремума => один из них - минимум)

   if (( (c1<=x2)&&(x2<=x3) ) || ( (x2<=x3)&&(x2<=c1) )) c1=x2;

   if (( (c1<=x3)&&(x3<=x2) ) || ( (x2<=x3)&&(x3<=c1) )) c1=x3;

   fprintf(par, "%3d| %6.6f|%6.6f|%6.6f|%6.6f|%6.6f|%6.6f|\n", iter, a, b, c, c1, F(a), F(b));

   if (c1>c)

    {

     double temp=c1; c1=c; c=temp;

    }

//Проверим, не дал ли этот шаг более точный результат    

   if (F(c1)<F(c))

    {

     b=c; c=c1;

    }

    else a=c1;

   if ( (c-a)/(b-a)<=e ) c=2*c-a;

   if ( (b-c)/(c-a)<=e ) c=2*c-b;

   if (iter>20) break; //если итераций стало более 20, то выйти, так как точность метода

           //парабол дотаточна высока и дальнейшие изменения точки минимума

           //не выйдет за пределы точности

  }

 fprintf(par, "----------------------------------------------------------------\n");

 fprintf(par, "\nИтераций:%3d\nКонечные значения: x=%6.6f  y=%6.6f",iter-1, a, F(a));

 /// если этот метод самый оптимальный, выводим его результаты на экран

 if (scr==1) printf("Kone4nie zna4eni9: x=%6.6f, y=%6.6f", a, F(a));

 method[4]=iter-1;

}

///////////////////////////////////////////////////////

/////////////...Главная процедура...///////////////////

///////////////////////////////////////////////////////

void main(void)

{

 cout<<"f(x)=x^3 - x + exp(-x)\n\n";

 double a,b,e;

 cout<<"vvedite otrezok i pogreshnost' \n";

 cin>> a >> b >> e;

 pass(a,b,e,0);

 dihotomia(a,b,e,0);

 zol_sechenie(a,b,e,0);

 fibonachi(a,b,e,0);

 parabola(a,b,e,0);

 cout<<"\nProgramma zapisala faili v papky 'D:\\minimum\n\n";

//Начнём искать метод, давший результат за наименьшее число итераций

 int optim=0;

  for (int i=1; i<=4; i++)

   if (method[i]<method[optim]) optim=i;// ищем наименьшее число итераций

  char* result;

  switch (optim)

   {

    case 0 : result="metod passivnogo poiska"; pass(a,b,e,1); break;

    case 1 : result="method dihotomii";  dihotomia(a,b,e,1); break;

    case 2 : result="method zolotogo secheniya"; zol_sechenie(a,b,e,1); break;

    case 3 : result="method FIbonachi"; fibonachi(a,b,e,1); break;

    case 4 : result="method parabol"; parabola(a,b,e,1); break;

   }

  cout << "\n\noptimalni metod - "<< result << ", " <<method[optim] << " step(s)";

  cout << "\n\n";

 getch();

}

Таблицы промежуточных значений


 

А также другие работы, которые могут Вас заинтересовать

23045. Дешифратори та мультиплексори 1.3 MB
  Це здійснюється аналогічно заданню параметрів елементів схеми за допомогою редактора пробних сигналів Stimulus Editor. Це робиться аналогічно заданню мітки вузла схеми причому в описі шини слід перерахувати через кому мітки усіх вузлів що входять у шину Альтернативна можливість полягає у використанні конструкцій типу BUS[1n] де BUS – ім’я шини BUS[1]BUS[n] – відповідні мітки вузлів. Пакет OrCAD дозволяє провести суто цифрове моделювання для даного вузла схеми якщо до цього вузла під’єднані лише цифрові входи та виходи. Зазначимо що...
23046. Тригери 1.45 MB
  1 зображено схему найпростішого RSтригера на елементах 2ІНЕ серії 74 із зворотнім зв’язком. Встановлення тригера в 10 відбувається при подачі нуля на NSNR при цьому протилежний вхід повинен бути встановлений в одиницю. Подача двох нулів є забороненою комбінацією при якій стан тригера буде невизначеним. Для даної схеми тригера доцільно у початковий момент встановити режим зберігання інформації потім у деякий момент подати імпульс встановлення 1 потім імпульс встановлення 0 після цього знову використати режим зберігання і нарешті...
23047. Регістри та лічильники 1.83 MB
  Виведіть графік залежності вхідних Reset Shift Info та вихідних Q0Q2 цифрових сигналів регістра від часу та поясніть ці залежності. Виведіть відповідні графіки для вхідних та вихідних сигналів та поясніть ці залежності. Джерела пробних сигналів підберіть таким чином щоб регістр послідовно виконав операції: а паралельного запису числа 0101; б перетворення цього числа на послідовний код; в послідовного запису числа 1010; Проведіть моделювання для цієї схеми. Виведіть відповідні графіки для вхідних та вихідних сигналів та поясніть ці...
23048. Імпульсні цифрові схеми 2.62 MB
  Формувачі імпульсів. 1 зображено схему формувача імпульсів на логічних елементах ІНЕ. 1 Недоліком цієї схеми є те що для формування імпульсів досить великої тривалості потрібно використати велику кількість логічних елементв. 2 Для формування імпульсів з синусоїдальної напруги часто застосовується тригер Шмітта рис.
23049. Схеми на операційних підсилювачах. Інвертуюче увімкнення ОП 2.04 MB
  Завдяки своєму високим коефіцієнту підсилення та вхідному опору а також низькому опору вихідному операційні підсилювачі ОП дуже широко застосовуються у схемотехніці особливо в мішаних аналоговоцифрових схемах. Додавши до ОП коло зворотнього звязку можна отримати підсилювач практично з будьяким коефіцієнтом підсилення. Коефіцієнт підсилення такої схеми у межах лінійності ОП рівний Rc Rin. Параметри ОП дозволяють добирати Rc та Rin у широкому діапазоні опорів отримуючи різні коефіцієнти підсилення.
23050. Цифро-аналогові перетворювачі 1.33 MB
  1 зображено схему 4розрядного ЦАП. 1 Лічильник U3A та пробні джерела складають тестову схему яка послідовно подає на вхід ЦАП цифрові коди від 0 0000 до 15 1111. Зростаючий код на виході ЦАП буде перетворюватися на лінійно зростаючу напругу. 2 зображено схему дослідження 8розрядного інтегрального ЦАП.
23051. Ознайомлення з основними можливостями пакета програм автоматизованого проектування електронних схем MicroSim PSPICE 8.0 1.35 MB
  Система автоматизованого проектування MicroSim PSPICE використовує один з найбільш вдалих кодів схемотехнічного моделювання SPICE Simulation Program with Integrated Circuit Emphasis який був розроблений на початку 70х років фахівцями Каліфорнійського університету США. Фактично зазначений код став стандартним для моделювання електронних схем і застосовується також у інших відомих системах моделювання схем зокрема MicroCap а вхідний формат мови завдань SPICE підтримується практично усіма пакетами автоматизованого проектування електронних...
23052. Електронний ключ на біполярному транзисторі 482 KB
  Каскад виконує логічну операцію заперечення оскільки високий рівень напруги на вході забезпечує введення транзистора у режим насичення коли напруга на навантаженні буде низькою. При введенні наведеної вище схеми дослідження ключового каскаду застосовуються джерела сталої напруги живлення VCC та імпульсної вхідної напруги VIN. Перелічимо основні параметри даних джерел: Як джерело сталої напруги живлення застосовується стандартна модель VSRC що міститься у бібліотеці source. Основними є такі її параметри: DC стала напруга що її виробляє...
23053. Електронні ключі на МДН-транзисторах 1.07 MB
  Вважайте що напруга живлення дорівнює 10 В амплітуда вхідного імпульсу 10 В тривалість цього імпульсу 500 нс його період 1000 нс. Тривалості фронту і спаду імпульсу задайте дуже малими наприклад по 0. Поясніть зміни у тривалості спаду вихідного імпульсу та рівні напруги логічного нуля на виході. Параметри джерел вважайте такими: напруга живлення 20 В амплітуда вхідного імпульсу 20 В тривалість цього імпульсу 500 нс його період 1000 нс.