99335

Проектирование цифровых устройств с помощью языка VHDL

Курсовая

Информатика, кибернетика и программирование

Полный объём программ, размещенных в системном ПЗУ, равен 4К слов (20 000 байт). Для того чтобы сохранить в разумных пределах длину области, занятой устройством в адресном пространстве ЭВМ, программа разбита на четыре секции, поочередно отображаемые в зону адресов (в окно) ПЗУ. Номер секции, «видимой» в данный момент на общей шине в окне ПЗУ

Русский

2016-09-09

254.5 KB

0 чел.

6

Министерство образования РФ

Рязанская Государственная Радиотехническая Академия

Кафедра САПР ВС

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

К курсовой работе

по курсу:

«Электротехника и электроника»

на тему:

«Проектирование цифровых устройств с помощью языка VHDL»

                   Выполнил:  _________Космачев А.А.

                       студент гр. 047                            

               Проверил:  _________Скворцов Н.В.

                                  

 

Рязань, 2003


Рязанская государственная радиотехническая академия

Кафедра: САПР ВС

Задание на курсовую работу по дисциплине «Электротехника и электроника»

студенту                               Космачеву А.А.                                                         гр.   047

Тема:                                    Проектирование цифровых устройств с помощью языка  VHDL

Срок представления работы к защите                                                               15 декабря           

Литература.

1. С. Бирюков, Е. Краснов Свето-информационное табло. – Радио, 1987, № 6, с. 17-20.

2. С.В. Триполитов, А.В. Ермилов Микросхемы, диоды, транзисторы: Справочник. – М.: Машиностроение, 1994. – с.ил.

3. С.А. Бирюков Цифровые устройства на МОП – интегральных микросхемах. – М.: Радио и связь, 1990. – 128 с.

 

Руководитель работы:                                                               _________________

                ( подпись)

Задание выдано:                                                                                   22.09.2003 г.

Задание принято к исполнению                                              _________________

                ( подпись) 


СОДЕРЖАНИЕ

Задание на курсовую работу…………………………………….2

 

ВВЕДЕНИЕ……………………………………………………….…4

1.Описание работы схемы………………….……………………5

2.Описание компонентов схемы………………………………...6

ЗАКЛЮЧЕНИЕ…………………………………………………….12

   Библиографический список……………………………………..13

ПРИЛОЖЕНИЕ

Исходные тексты компонентов схемы………………………...14

Результаты моделирования…………………………………….19

ВВЕДЕНИЕ

Широкое внедрение цифровой техники в радиолюбительское творчество связано с появлением интегральных микросхем. Цифровые устройства, собранные на дискретных транзисторах и диодах, имели значительные габаритные размеры и массу; ненадежно работали из-за большого количества элементов, и особенно паяных соединений. Интегральные микросхемы, содержащие в своем составе десятки, сотни, тысячи, а иногда десятки и сотни тысяч компонентов, позволили по-новому подойти к проектированию и изготовлению цифровых устройств. Надежность отдельной микросхемы мало зависит от количества элементов и близка к надежности одиночного транзистора, а потребляемая мощность в пересчете на отдельный компонент резко уменьшается по мере повышения степени интеграции.

В результате на интегральных микросхемах стало возможным собирать сложнейшие устройства, изготовить которые в радиолюбительских условиях без использования микросхем было бы совершенно невозможно.

Широкое распространение получили микросхемы серии К155, однако они потребляют довольно большую мощность. Во многих случаях их можно заменить микросхемами КМОП-структуры, практически не потребляющими мощности в статическом режиме. Разработке цифровых устройств радиолюбителями на микросхемах структуры МОП и КМОП мешает отсутствие систематического изложения вопросов их практического использования в радиолюбительской литературе.

  1.  
    ОПИСАНИЕ РАБОТЫ СХЕМЫ

В данной курсовой работе мы будем проектировать   узел специализированного устройства системного ПЗУ (СПЗУ). Электрическая  схема  узла СПЗУ представлена на рис.1.

Полный объём программ, размещенных в системном ПЗУ, равен 4К слов (20 000 байт). Для того чтобы сохранить в разумных пределах длину области, занятой устройством в адресном пространстве ЭВМ, программа разбита на четыре секции, поочередно отображаемые в зону адресов (в окно) ПЗУ. Номер секции, «видимой» в данный момент на общей шине в окне ПЗУ, определяется состоянием регистра коммутации. Он, постоянно доступный на общей шине ЭВМ, позволяет прграммно управлять работой устройства. Наиболее важная функция регистра – переключение секций ПЗУ. Регистр коммутации реализован элементом К580ИР82. Начальный адрес области ПЗУ анализируется предварительным дешифратором. Окончательная дешифрация адресов осуществляется элементом , который управляет доступом к структурам устройства с учетом текущего состояния регистра коммутации. Собственно ПЗУ представлено микросхемой К573РФ2. Зона ПЗУ – адресное пространство, в котором работает программа описываемого устройства. Системная ОЗУ выполнено на микросхеме К541РУ2 с организацией 1К x 4 бит.

При разработке или модификации программ СПЗУ необходимо учитывать специфику устройства: поочередное отображение четырех секций прграммы в одно адресное окно. В условиях столь необычной аппаратуры необходимы специальные меры для выполнения самых распространенных действий: обращение к переменным в области адресов системного ОЗУ и вызова программ из области адресов ПЗУ.

Применение его в стационарных вычислительных комплексах повышает производительность труда; особенно эффективно использование в микроЭВМ, встраиваемых в системы управления.

 

2. ОПИСАНИЕ КОМПОНЕНТОВ СХЕМЫ

Приведём словесное описание всех 7 логических элементов нашего узлаа устройства системного ПЗУ .

2И-НЕ (К559ИП1П).

Условное графическое обозначение.

                                     А   

                                               &                    Y

                                     В   

Таблица истинности

Вход

Выход Y

А

В

0

0

1

0

1

1

1

0

1

1

1

0

              Эпюра работы  2И-НЕ (К559ИП1П). 

8И-НЕ (К155ЛА2).

Условное графическое обозначение.

                                                 A

                                                 B

                                                 C

                                                 D

                                                                                              Y=ABCDEFGH

                                                 E  

                                                 F

                                                 G   

                                                 H                                          

Таблица истинности

Вход

Выход

A

B

C

D

E

F

G

H

Y

0

X

X

X

X

X

X

X

1

X

0

X

X

X

X

X

X

1

X

X

0

X

X

X

X

X

1

X

X

X

0

X

X

X

X

1

X

X

X

X

0

X

X

X

1

X

X

X

X

X

0

X

X

1

X

X

X

X

X

X

0

X

1

X

X

X

X

X

X

X

0

1

1

1

1

1

1

1

1

1

0

Время задержки распространения   tзд,р= 5 нс.  

Эпюра работы 8И-НЕ (К155ЛА2).

8-разрядный буферный регистр (К580ИР82).

D-регистр «защёлка» с тремя состояниями на выходе. Предназначен для ввода-вывода информациисо стробированием. В зависимости от состояния стробирующего сигнала может работать в режимах шинного формирователя или хранения.

Условное графическое обозначение.

                                                                                 

                                                     1                                                11

                                            2                                                12

                                            3                                                13

                                            4                                                14     

                                            5                                                15        

                                            6                                                16

                                            7                                                17  

                                            8                                                18    

                                        

                                        9

                                       

                                       10

 

  1…8 – информационные входы D10…D17; 9 – вход разрешения выхода OE; 10 – стробирующий входа STB; 11…18 – информационные выходы D00…D07.

Таблица истинности

Вход OE

Вход STB

Входы D1

Выходы DO

0

0

0

1

1

1

0

X

1

0

X
X

1

0

D00

Z

D00 – состояние выхода в предыдущем такте; X – логический уровень на входе не влияет на состояние выхода.

Время задержки распространения tзд.р = 5 нс.

Эпюра работы 8-разрядного буферного регистра (К580ИР82).

Шестиканальный буферный элемент (К155ЛП11)

Условное графическое обозначение.

Таблица истинности

E1

E2

I

y1-y4

y5-y6

0

0

0

0

1

1

0

0

1

1

0

0

0

1

0

1

0

1

0

1

0

1

Z

Z

0

1

Z
Z
0

1

Время задержки распространения   tзд,р= 10 нс

.  

Эпюра работы шестиканального буферного элемента (К155ЛП11)

8- разрядный неинвертирующий шинный формирователь (КР580ВА86)

Условное графическое обозначение.

                                                                                 

                                                     1                                                11

                                            2                                                12

                                            3                                                13

                                            4                                                14     

                                            5                                                15        

                                            6                                                16

                                            7                                                17  

                                            8                                                18    

                                       9

                                      

                                       10

OE – вход разрешения выхода OE; T- вход направления передачи.

Таблица истинности

Вход OE

Вход T

Вход-выходы   стороны А

Вход-выходы   стороны В

0

0

0

0

1

1

1

0

0

X

1(вход)

1(вход)

0(вход)

0(выход)

-

0

1

0

1

Z

0(вход)

0(выход)

1(выход)

1(вход)

-

1

1

0

1

Z

В данной курсовой работе шинный формирователь работает в одном направлении (T=0)

Эпюра работы 8- разрядного неинвертирующего шинного формирователя (КР580ВА86)

Заключение

В результате выполнения данной курсовой работы были изучены методы проектирования и разработки цифровых  устройств в соответствии с данными технического задания. Было произведено проектирование кристалла БИС. А также было изучено практическое применение ЭВМ для проектирования цифровых устройств. Для проектирования цифрового устройства был использован пакет языка описания Active-VHDL.

С использованием ЭВМ проектирование становится проще и эффективнее, а также мы можем изменить состав проекта или доработать уже существующий, и следовательно получить то, что нам нужно.

 

Библиографический список.

1. С. Бирюков, Е. Краснов Свето-информационное табло. – Радио, 1987, № 6, с. 17-20.

2. С. Алексеев Применение микросхем серии К155. – Радио, 1986, № 7, с. 32-34.

3. С.В. Триполитов, А.В. Ермилов Микросхемы, диоды, транзисторы: Справочник. – М.: Машиностроение, 1994. – с.ил.

4. С.А. Бирюков Цифровые устройства на МОП – интегральных микросхемах. – М.: Радио и связь, 1990. – 128 с.


 

А также другие работы, которые могут Вас заинтересовать

22972. Системи числення, які застосовуються у мікропроцесорній техніці 713.5 KB
  Так наприклад число 371 може бути розкладено по степенях числа 10 таким чином: 371=3х1027х1011х100 = 300701 Двійкова система числення У електроннообчислювальній техніці зручніше користуватися двійковою системою числення в основі якої лежить число 2. Так наприклад число 1001 є 4 бітовим числом а розглянутий нами вище двійковий еквівалент числа 37110 тобто 101110011 дев’ятибітовим числом. Для цього багаторозрядне двійкове число розбивається на тетради кожна з яких містить по чотири розряди двійкового числа.
22973. Мікропрцесори та малі електронно-обчислювальнні машини (ЕОМ) 1.85 MB
  Будова і принцип дії центральної частини малої ЕОМ Кожна мала електронно обчислювальна машина ЕОМ містить два блоки процесор і основну пам’ять рис. У блоці основної пам’яті зберігається оброблювана інформація і програми за якими вона обробляється. Процес розв’язання будь якої задачі на ЕОМ складається з послідовності елементарних дій котрі може виконувати процесор а саме операції вибірки інформації з пам’яті або запису до неї арифметичні та логічні операції операції порівняння тощо. На кожному кроці обробки інформації процесор...
22974. Робота з зовнішніми пристроями. Паралельний інтерфейс. 6.59 MB
  Але зручніше скористатися спеціальною ВІС паралельним програмованим адаптером ППА типу КР580ВВ55А в міжнародних позначеннях 8255А. ППА спроможний обслуговувати 3 зовнішні пристрої через три свої порти АВ і С кожний по 8 розрядів. вибір кристалу =1 ППА відключений = 0 ППА задіяний. Комбінація що відповідає DРКС означає запис в РКС регістр керуючого слова інструкції про те що має робити ППА.
22975. Послідовний інтерфейс 3.66 MB
  Всі ці функції може виконувати спеціальна ВІС що входить до мікропроцесорного комплекту КР580 і має назву Універсальний Синхронно Асинхронний Програмований Прийомопередавач УСАПП типу КР580ВВ51. УСАПП типу КР580ВВ51 в значній мірі є автономним у своїй роботі. Все інше робить сам УСАПП. При видачі даних МП звертається до УСАПП як до зовнішнього пристрою.
22976. Організація пам’яті мікропроцесорної системи 11.06 MB
  Функції виводів цього ОЗП позначено на рис. R визначає напрямок руху інформації чи то запис до ОЗП чи то читання з нього. ОЗП типу КР541РУ2 Це статичний ОЗП на ТТЛ логіці.
22977. Мікропроцесор КР1810ВМ86 (8086) 6.05 MB
  Але у порівнянні з МП80 він має такі істотні відміни: при збереженні тієї ж nМОН технології була досягнута вища ступінь інтеграції і на кристалі 55 х 55 мм розташовано біля 30 тисяч транзисторів; зменшено інерційність логічних елементів і тактову частоту підвищено до 5 8 МГц; завдяки цьому продуктивність мікропроцесора збільшилась на порядок; розширено розрядність шини даних до 16 розрядів; розширено розрядність шини адреси до 20 розрядів таким чином забезпечено можливість адресувати пам’ять до 1 Мбайт; розширено у кілька разів...
22978. Переривання 5.91 MB
  Організація переривань Все починається з того що ЗП виставляє сигнал високого рівня логічну одиницю на вхід INT мікропроцесора. Ці дані будуть оброблятися мікропроцесором за підпрограмою обробки переривань яка повинна бути заздалегідь закладена у пам’ять мікропроцесора . Замість цього в лічильник команд заноситься адреса команди з якої починається підпрограма обробки переривань. Лише після цього стає можливим введення даних з ЗП і старт підпрограми обробки переривань цих даних.
22979. Прямий доступ до пам’яті (ПДП) 3.8 MB
  Контролер ПДП Забезпечити роботу в режимі захоплення шин можна за допомогою логічних схем та тригерів саме так це зроблено наприклад у €œМікролабі€ але зручніше скористатися спеціальною ВІС контролером прямого доступу до пам’яті КПДП. Працює КПДП в двох сильно відмінних один від одного режимах: в режимі програмування коли мікропроцесор €œзакладає€ в нього необхідні інструкції і в режимі обміну даними між зовнішнім пристроєм і ОЗП. Схематичне зображення ІМС КПДП типу КР580ВТ57 подано на рис. В режимі програмування вони...
22980. Клавіатура і індикація 5.36 MB
  ОЗП індикації являє собою область операційної пам’яті в якій стільки комірок скільки знаків може бути розміщено на екрані. Побудова знаків Знаки на екрані дисплею будуються за мозаїчним принципом. Знакоформувач Знакоформувач являє собою ПЗП в якому закладена інформація про структуру утворюваних ним знаків. Таким чином ці три ІМС можуть створювати 96 різних знаків символів.