99692

Испытание асинхронного трехфазного двигателя с короткозамкнутым ротором

Лабораторная работа

Производство и промышленные технологии

Осуществить пуск двигателя путем переключения электрической схемы соединения обмотки статора со звезды на треугольник. Изменить направление вращения ротора двигателя на обратное. Добиться, чтобы направление вращения соответствовало направлению, указанному на корпусе генератора постоянного тока, сопряженного с двигателем.

Русский

2016-10-08

100 KB

3 чел.

Ивановский Государственный Энергетический Университет

Кафедра Электромеханики.

Лабораторная Работа № 2А

ИСПЫТАНИЕ АСИНХРОННОГО ТРЁХФАЗНОГО ДВИГАТЕЛЯ

С КОРОТКОЗАМКНУТЫМ РОТОРОМ

Выполнил: ст.гр. 3-15

Лужбин Д.С.

Проверил:

Караулов В.Н.

Иваново 2003


Работа № 2А

ИСПЫТАНИЕ АСИНХРОННОГО ТРЁХФАЗНОГО ДВИГАТЕЛЯ

С КОРОТКОЗАМКНУТЫМ РОТОРОМ

  1.  Программа работы

1.1. Записать паспортные данные.

1.2. Осуществить пуск двигателя путем переключения электрической схемы соединения обмотки статора со звезды на треугольник.

1.3. Изменить направление вращения ротора двигателя на обратное. Добиться, чтобы направление вращения соответствовало направлению, указанному на корпусе генератора постоянного тока, сопряженного с двигателем.

1.4. Снять и построить рабочие характеристики двигателя при номинальном линейном напряжении и соединении обмотки статора в треугольник:

I1, P1, M2, s, , f(P2)   при U1=U1Н=const,   f1=const.

  1.  Методические указания

К п. 1.1

Паспортные данные двигателя

Номинальная мощность

Р2= 3, Вт.

Номинальные линейные напряжения и токи обмотки статора при соединении фаз в треугольник / в звезду:

220/380 , В.

11,6/6,7 , А.

Номинальная частота вращения

 nн= 1425 , об/мин.

Номинальный коэффициент мощности

  .

5. Номинальный коэффициент полезного действия

.

6. Омическое сопротивление фазы обмотки статора при 75 С

R1=   1,1 , Ом.


К п. 1.2   

Схема для испытания двигателя в режиме нагрузки представлена на рис. 1,а. Линейное напряжение сети U=220 В. Номинальное напряжение питания испытуемого двигателя обеспечивается при соединении фаз обмотки статора в треугольник.

На схеме показан переключатель фаз обмотки статора с на . Переключатель служит для уменьшения пускового тока двигателя, который в асинхронных машинах может достигать 5-7-кратного значения по отношению к номинальному. Принципиальная схема переключателя приведена на рис.1,б. Перед запуском двигателя переключатель  ставится в положение , после этого включается рубильник Р1. После разгона двигателя переключатель  ставится в положение .

При использовании данного способа пуска пусковой ток в фазе статора уменьшается в  раз, а линейный ток – в три раза.

   а)    б)

Рис. 1. Схема испытания асинхронного двигателя в режиме нагрузки:

а) электрические схемы двигателя и генератора; б) схема переключателя

К п. 1.3

Для перемены направления вращения следует изменить направление вращения магнитного поля в асинхронном двигателе. Для этого достаточно поменять местами два любых провода, питающие обмотку статора.

Механическую нагрузку двигателю создает сочлененный с ним генератор постоянного тока. Генератор работает на сопротивление нагрузки, подключаемое рубильником Р2. Для правильной работы генератора необходимо обеспечить требуемое направление вращения, указанное стрелкой на его корпусе.

К п. 1.4

Первая точка рабочих характеристик двигателя соответствует режиму холостого хода (генератор постоянного тока должен быть отключен от сопротивления нагрузки). В первую строку табл. 1 записываются токи и мощности, подводимые к фазам двигателя, а также его частота вращения.

Остальные точки рабочих характеристик снимаются при включенном рубильнике Р2. Нагрузка двигателя регулируется с помощью реостата RРВ в цепи обмотки возбуждения генератора. Постепенно увеличивая нагрузку, записывают показания в табл. 1 для 4-5 значений нагрузки. При этом ток статора не должен превышать номинального значения более чем на 15 %.

Таблица 1. Рабочие характеристики двигателя при номинальном напряжении I1, P1, M2, s, , f (P2) при  U1=const=Uн и   f1=const

ДАННЫЕ ОПЫТА

Линейное

Напряжение

Линейные Токи

Мощность поступающая

В фазы

Частота

Вращения

U1л, В

Ia, A

Ib, A

Ic, A

Pa, BT

Pb, Bt

Pc, Bt

n, об/мин

220

7,3

7

6,2

80

200

100

1499

220

8,5

8,8

7,8

620

720

630

1475

220

9,5

10

8,9

810

920

820

1465

220

11

11,5

10,5

1050

1150

1050

1452

220

13

13,5

12,5

1350

1425

1300

1435

3. Обработка результатов экспериментальных исследований

Результаты расчетов рабочих характеристик двигателя записываются в табл. 2.

Таблица 2. Рабочие характеристики двигателя при номинальном напряжении I1, P1, M2, s, , f (P2) при  U1=const=Uн и   f1=const

Данные расчета

cos j

Pмех+Pст, Вт

Рэ1, Вт

Рэ2, Вт

S

10^-3

, Вт

P2, Вт

M2, Н.м

, %

P1,Bt

0.146

326.741

51.359

0

67

380

0

0

0

380

0.618

77.173

29.4

17

443.16

1526.8

9.8

0.75

1970

0.707

98.586

52.625

23

490.7

2059.3

13.42

0.8

2550

0.775

133.1

94.513

32

570.6

2675.4

17.6

0.824

3250

0.823

185.9

160.206

43

693.2

3381.8

22.5

0.83

4075

 

Порядок расчета

1. Активная мощность, потребляемая обмоткой статора, Вт,

.

2. Среднее значение линейного тока, подводимого к обмотке статора, А,

.

3. Коэффициент мощности

сos j1 =P1/(UI).

4. Электрические потери в обмотке статора, Вт,

РЭ1=I2R1.

Суммарная величина механических и магнитных потерь, РМЕХ+РСТ, определяется по результатам испытаний двигателя в режиме холостого хода (первая строка в табл. 1). В этом режиме полезная мощность и электрические потери в роторе равны нулю. Поэтому

Р1= РЭ1+РМЕХ+РСТ+РДОБ.

Откуда   

 РМЕХ+РСТ1_РЭ1_РДОБ,

где добавочные потери в двигателе,  Вт,

 РДОБ =0,005.Р1.

Механические и магнитные потери не изменяются при изменении нагрузки двигателя.

Скольжение

 s=(n1_n)/n1 ,

где n1=60f1/р, об/мин; f1=50 Гц. Величина n1 может принимать значения: 3000, 1500, 1000,… об/мин. Для данного двигателя величина n1 выбирается из этого ряда  как ближайшее большее значение по отношению к nн.  

7. Электрические потери в обмотке ротора, Вт,

 РЭ2=s .РЭМ = s .(Р1_РСТ _РЭ1),  

где РЭМ _ электромагнитная мощность, а потери в стали сердечника статора равны, Вт,

 РСТ=РМЕХ= (РМЕХ+РСТ )/2 .

8. Суммарные потери, Вт,

 =РЭ1+РЭ2+РМЕХ+РСТ +РДОБ.

9. Полезная механическая мощность двигателя, Вт,

 Р21_.

10. Момент на валу двигателя, Н.м,

 М2=9,55P2/n.

11. Коэффициент полезного действия (КПД)

 =100%21 .

По данным табл. 2 построить рабочие характеристики двигателя.


 

А также другие работы, которые могут Вас заинтересовать

45861. Устройства автоматической смены инструментов. Револьверные головки и инструментальные магазины - накопители 86.88 KB
  Устройства автоматической смены инструментов. Обязательным элементом автоматизированных и автоматических производств функционирующих на основе безлюдных технологий является автоматическая смена инструментов осуществляющаяся устройствами автоматической смены инструментов УАСИ. Возможность автоматической смены инструментов зависит от наличия достаточного количества инструментов которые может вместить базовый элемент УАСИ – инструментальный накопитель от его расположения доступности наличия датчиков для контроля размера износа и поломки...
45862. Инструментальные магазины – накопители. Виды инструментальных магазинов. Кодирование и распознавание инструментов в инструментальных магазинах 320.18 KB
  Инструментальные магазины – накопители. Виды инструментальных магазинов. Кодирование и распознавание инструментов в инструментальных магазинах. Основным элементом УАСИ является инструментальные магазины – накопители устанавливаемые на многооперационных станках представляющих собой накопители инструментов большой емкости от 16 и более.
45863. Автоматизация загрузочных операций. Автоматизация и механизация загрузки и разгрузки. Виды загрузочно – разгрузочных устройств 16.43 KB
  Для осуществления загрузочных операций в автоматическом режиме необходимо осуществлять следующие действия: 1создать задел заготовок для обеспечения бесперебойной работы загрузочного оборудования 2осуществить пространственную ориентацию загрузочных изделий. В комплексе задач по автоматизации технологических процессов наиболее сложным является задача автоматизации и механизации загрузки и разгрузки что вызвано большим разнообразием форм и размеров заготовок и деталей а также самих процессов. ЗРУ в условиях серийного производства...
45864. Автоматический контроль. Виды контроля по формам воздействия на объект. Активный автоматический контроль 14.98 KB
  Виды контроля по формам воздействия на объект. Под устройствами автоматического контроля понимают устройства которые без вмешательства человека выполняют всю совокупность операций необходимых для выяснения действительных параметров заготовок и деталей полуфабрикатов производят измерения в процессе обработки до его начала либо после сортируют по величине отклонений действительных параметров от номинального значения а также управляет режимами работы оборудования. Для осуществления пассивного автоматического контроля широко используются...
45865. Промышленные роботы: понятие и назначение. Основные сведения о промышленных роботах. Манипуляторы и автооператоры 18.22 KB
  При обслуживании основного технологического оборудования ПР выполняют операции по загрузке заготовок и разгрузке готовых деталей или полуфабрикатов контролю смене инструментов уборке отходов производства установке и смене средств контроля в автоматическом режиме на технологическое оборудование межоперационной передаче и транспортированию складированию. В составе транспортных систем ПР могут самостоятельно осуществлять операции перемещения и доставки грузов обслуживать различные линии осуществлять операции по накоплению и контролю. Они...
45866. Инструменты для нарезания резьбы. Формообразующие движения. Особенности эксплуатации и обеспечение точности нарезаемой резьбы 103.44 KB
  Инструменты для нарезания резьбы. Особенности эксплуатации и обеспечение точности нарезаемой резьбы. Резьбы на деталях получают на сверлильных резьбонарезных и токарных станках а также накатыванием т. Инструментом для накатывания резьбы служат накатные плашки накатные ролики и накатные головки.
45867. Инструменты для нарезания зубьев цилиндрических колес. Методы их работы. От каких факторов зависит степень точности нарезаемого зубчатого венца 96.1 KB
  Относятся 1дисковые пальцевые и зуборезные фрезы зубодолбежные головки идрСхема фрезерия зуб. Вращение фрезы вокруг своей оси. Пальцевые фрезы целесообразно использовать при обр. фрезы и загат.
45868. Инструменты для повышения степени точности зубчатых колес, их конструкция и принцип работы 61.73 KB
  Если вращать шевер а обрабатываемому колесу увлекаемому им во вращение сообщать поступательное движение то режущие кромки канавок шевера будут снимать тонкие толщиной менее 001 мм волосообразные стружки с поверхности зубьев. Шевингование применяют для тонкой обработки зубьев у незакаленных колес или закаленных до твердости HRC = 35. Схема шлифования зубьев: а методом копирования; б методом обкатки Закаленные до более высокой твердости поверхности зубьев могут быть отделаны шлифованием. Как и при зубонарезании шлифование зубьев...
45869. Абразивные материалы и техническая характеристика абразивных инструментов. Особенности режима шлифования 42.39 KB
  Особенности режима шлифования. АБРАЗИ́ВНЫЕ МАТЕРИА́ЛЫ вещества повышенной твердости применяемые в массивном или измельченном состоянии для механической обработки шлифования резания истирания заточки полирования и т. Плоские круги прямого профиля ПП применяют для круглого наружного внутреннего и бесцентрового шлифования для плоского шлифования периферией круга и для заточки инструментов. Плоские круги с двухсторонним коническим профилем 2П применяют для вышлифовывания зубьев шестерен и шлифования резьбы.