99704

Решение методами Эйлера и Эйлера модифицированной задачи Коши для дифференциального уравнения

Курсовая

Информатика, кибернетика и программирование

Чтобы решить обыкновенное дифференциальное уравнение, необходимо знать значения зависимой переменной и (или) её производных при некоторых значениях независимой переменной. Если эти дополнительные условия задаются при одном значении независимой переменной, то такая задача называется задачей с начальными условиями, или задачей Коши

Русский

2016-10-08

286.5 KB

0 чел.

Сибирский государственный университет телекоммуникации

и информатики

Уральский технический институт связи и информатики

Кафедра физики, прикладной математики и информатики.

КУРСОВАЯ РАБОТА

по информатике:

Визуализация численных методов.

Решение обыкновенных дифференциальных уравнений.

                                                                           Выполнил:

студент гр.:

                                                                               Проверил:

                                                                                                   Минина Е.Е.

Екатеринбург

2007 г.

Содержание:

Введение………………………………………………………………….3

1. Постановка задачи…………………………………………………….4

2. Описание методов решения…………………………………………..5

2. 1. Суть задачи………………………………………………………….5

2. 2. Геометрический смысл задачи…………………………………….5

2. 3. Численные методы решения задачи Коши……………………….6

2. 4. Метод Эйлера……………………………………………………….9

2. 5. Метод Эйлера модифицированный……………………………….9

2. 6. Метод Рунге-Кутта 4-го порядка………………………………….10

2. 7. Решение поставленной задачи методами Эйлера и Эйлера модифицированного…………………………………………………………….12

2. 7. 1. Метод Эйлера……………………………………………………12

2. 7. 2. Метод Эйлера модифицированный……………………………13

3. Алгоритм решения задачи…………………………………………...16

3. 1. Алгоритмы подпрограмм.………………………………………....16

3. 1. 1. Подпрограмма метода Эйлера………………………………….16

3. 1. 2 Подпрограмма метода Эйлера модифицированного…………..16

3. 1. 3. Подпрограмма общего решения и поиска максимальных значений x и y……………………………………………………………………17

3. 2. Алгоритм функции…………………………………………………17

3. 3. Алгоритм программы………………………………………………19

4. Форма программы…………………………………………………….20

5. Листинг программы…………………………………………………..21

6. Решение задачи в MathCad…………………………………………..23

Заключение………………………………………………………………25


Введение.

     


1. Постановка задачи.

Решить методами Эйлера и Эйлера модифицированного задачу Коши для дифференциального уравнения 1-го порядка на отрезке [X0; Xk] с шагом h и начальным условием: Y(X0) = Y0.

Ответ должен быть получен в виде таблицы результатов:

X

Y(1)

Y(2)

YT

X0

Y0(1)

Y0(2)

Y(X0)

X1

Y1(1)

Y1(2)

Y(X1)

Xk

Yk(1)

Yk(2)

Y(Xk)

Где Y(1), Y(2) – решения, полученные различными численными методами, YT – точное решение дифференциального уравнения.

Возможно представление результатов решения не в виде таблицы, а в виде списков.

Данные таблицы визуализировать на форме в виде графиков.

Перед вычислением последнего столбца таблицы результатов необходимо из начальных условий вычесть значение коэффициента c, используемого в общем решении.

  

Дифференциальное уравнение

X0

Xk

h

Y0

Общее решение

y’ + y/x = 3/x

1

1,8

0,1

0


2. Описание методов решения.

2. 1. Суть задачи.

Чтобы решить обыкновенное дифференциальное уравнение, необходимо знать значения зависимой переменной и (или) её производных при некоторых значениях независимой переменной. Если эти дополнительные условия задаются при одном значении независимой переменной, то такая задача называется задачей с начальными условиями, или задачей Коши. Часто в задаче Коши в роли независимой переменной выступает время.

Задачу Коши можно сформулировать следующим образом:

Пусть дано дифференциальное уравнение  и начальное условие y(x0) = у0. Требуется найти функцию у(x), удовлетворяющую как указанному уравнению, так и начальному условию.

Численное решение задачи Коши сводится к табулированию искомой функции.

График решения дифференциального уравнения называется интегральной кривой.

2. 2. Геометрический смысл задачи.

y’ = f(x,y)  - тангенс угла наклона касательной к графику решения в точке (х, у) к оси 0Х, - угловой коэффициент (рис. 1).

Рисунок 1. Геометрический смысл задачи Коши.

Существование решения:

Если правая часть f(x, y) непрерывна в некоторой области R, определяемой неравенствами

|x-x0| < а; |y-y0| < b,

то существует, по меньшей мере, одно решение у = у(х), определённое в окрестности |х – х0| < h, где h - положительное число.

Это решение единственно, если в R выполнено условие Липшица

|f(x,y)-f(x,y)| ≤N|y-y|(x,y),

где N - некоторая постоянная (константа Липшица), зависящая, в общем случае, от а и b. Если f(x, у) имеет ограниченную производную

fy(x, y) в R, то можно положить N = мах |fy(х, у)| при (х, y) принадлежащим R.

2. 3. Численные методы решения задачи Коши.

При использовании численных методов выполняется замена отрезка [х0, X] - области непрерывного изменения аргумента х множеством . состоящего из конечного числа точек х0 < х1 < ... < xn = Х - сеткой.

При этом xi называют узлами сетки.

Во многих методах используются равномерные сетки с шагом:

Задача Коши, определённая ранее на непрерывном отрезке [х0, X], заменяется её дискретным аналогом - системой уравнений, решая которую можно последовательно найти значения y1, y2,…,yn - приближённые значения функции в узлах сетки.

Численное решение задачи Коши широко применяется в различных областях науки и техники, и число разработанных для него методов достаточно велико. Эти методы могут быть разделены на следующие группы.

Одношаговые методы, в которых для нахождения следующей точки на
кривой у =
f(x) требуется информация лишь об одном предыдущем шаге.
Одношаговыми являются метод Эйлера и методы Рунге - Кутта.

Методы прогноза и коррекции (многошаговые), в которых для отыскания следующей точки кривой у = f(x) требуется информация более чем об одной из  предыдущих точек.   Чтобы  получить достаточно точное  численное значение, часто прибегают к итерации. К числу таких методов относятся методы Милна, Адамса - Башфорта и Хемминга.

Явные методы, в которых функция Ф не зависит от yn+1.

Неявные методы, в которых функция Ф зависит от yn+1.

2. 4. Метод Эйлера.

Иногда  этот  метод  называют   методом  Рунге-Кутта  первого   порядка точности.

Данный метод одношаговый. Табулирование функции происходит поочередно в каждой точке. Для расчета значения функции в очередном узле необходимо использовать значение функции в одном предыдущем узле.

Пусть дано дифференциальное уравнение первого порядка:

Y’ = f(x, y)

с начальным условием

y(x0) = y0

Выберем шаг h и введём обозначения:

xi = х0 + ih  и yi = y(xi),   где   i = 0, 1, 2, ...,

xi - узлы сетки,

yi - значение интегральной функции в узлах.

Иллюстрации к решению приведены на рисунке 2.

Проведем прямую АВ через точку (xi, yi) под углом α. При этом tg α = f(xi, yi)

В соответствий с геометрическим смыслом задачи, прямая АВ является касательной к интегральной функции. Произведем замену точки интегральной функции точкой, лежащей на касательной АВ.

Тогда yi+1 = yi + Δy

Из прямоугольного треугольника ABC  

Приравняем правые части tg α = f(xi, yi) и . Получим

Отсюда Δу = hf(xi, yi).

Подставим в это выражение формулу yi+1 = yi + Δy, а затем преобразуем его. В результате получаем формулу расчета очередной точки интегральной функции:

.

Рисунок 2. Метод Эйлера.

Из формулы  видно, что для расчета каждой следующей точки интегральной функции необходимо знать значение только одной предыдущей точки. Таким образом, зная начальные условия, можно построить интегральную кривую на заданном промежутке.

Блок-схема процедуры решения дифференциального уравнения методом Эйлера приведена на рисунке 3.

F(x, у) - заданная функция – должна

быть описана отдельно.

Входные параметры:

Х0, XK—начальное и конечное

значения независимой переменной;

Y0 – значение y0 из начального условия

y(x0) = y0;

N - количество отрезков разбиения;

Выходные параметры:

У - массив значений искомого решения

в узлах сетки.

Рисунок 3. Блок-схема процедуры решения дифференциального уравнения методом Эйлера.

Метод Эйлера - один из простейших методов численного решения обыкновенных дифференциальных уравнений. Но существенным его недостатком является большая погрешность вычислений. На рисунке 2 погрешность вычислений для io шага обозначена ε. С каждым шагом погрешность вычислений увеличивается.

2. 5. Метод Эйлера модифицированный.

Для уменьшения погрешности вычислений часто используется модифицированный метод Эйлера. Этот метод имеет так же следующие названия: метод Эйлера-Коши или метод Рунге-Кутта второго порядка точности.

Пусть дано дифференциальное уравнение первого порядка

с начальным условием:

Выберем шаг h и введём обозначения:

xi = x0 + ih  и yi = y(xi),   где   i = 0, 1, 2, ...,

xi  - узлы сетки,

yi - значение интегральной функции в узлах.

При использовании модифицированного метода Эйлера шаг h делится на два отрезка.

Иллюстрации к решению приведены на рисунке 4.

Рисунок 4. Метод Эйлера модифицированный.

Проведем решение в несколько этапов:

  1.   Обозначим точки: А(хi, yi,), C(xi + h/2, yi + h/2 ∙ f(xi, yi)) и B(xi+1, yi+1);
  2.   Через точку А проведем прямую под углом α, где tg α = f(xi, yi);
  3.   На этой прямой найдем точку С(хi + h/2, yi + h/2 ∙ f(xi, yi));
  4.   Через точку С проведем прямую под углом α1, где tg α1 = f(xi + h/2,yi + h/2 ∙ f(xi, yi));
  5.   Через точку А проведем прямую, параллельную последней прямой;
  6.   Найдем  точку B(xi+1, yi+1).   Будем  считать   B(xi+1, yi+1)  решением дифференциального уравнения при х = xi+1;
  7.   После проведения вычислений, аналогичных вычислениям, описанным в методе Эйлера, получим формулу для определения значения уi+1:

yi+1 = yi + hf(xi + h/2, yi + h/2 ∙ f(xi, yi)).

Модифицированный метод Эйлера дает меньшую погрешность. На рисунке 4 это хорошо видно. Так величина εl характеризует погрешность метода Эйлера, а ε - погрешность метода Эйлера модифицированного.

Блок-схема процедуры решения дифференциального уравнения методом Эйлера модифицированным приведена на рисунке 5.

F(x, у) - заданная функция - должна

быть описана отдельно.

Входные параметры:
Х0,
XК - начальное и конечное

значения независимой

переменной;

Y0 – значение y0 из начального условия

y(x0)=y0;

N - количество отрезков разбиения;

Выходные параметры:

Y - массив значений искомого решения

в узлах сетки.

Рисунок 5. Блок-схема процедуры решения дифференциального уравнения методом Эйлера модифицированным.

2. 7. Решение поставленной задачи методами Эйлера и Эйлера модифицированного.

2. 7. 1. Метод Эйлера.

1. Строим оси координат;

2. Отмечаем A(1; 2) – первую точку интегральной кривой;

3. Ищем угол наклона касательной к графику в точке A:

4. Строим касательную l0 в точке А под углом α0;

5. Находим х1 по формуле: xi = х0 + ih, где h – шаг интегрирования

x1 = 1 + 1 · 0,1 = 1,1;

6. Проводим прямую x = x1 = 1,1  до пересечения с прямой l0, отмечаем точку B(x1; y1);

7. Ищем y точки B:

Из прямоугольного треугольника ABC ,

Δy = y1 – y0,

Δx = x1 – x0 = h,

f(x0; y0) = (y1 – y0)/h =>

y1 = y0 + h · (f(x0; y0)) = 0 + 0,1 · f(1;0) = 0 + 0,1 · 3 = 0,3

Следовательно, точка B имеет координаты (1,1; 0,3).

Рисунок 8. Решение задачи методом Эйлера.

2. 7. 2. Метод Эйлера модифицированный.

1. Строим оси координат;

2. Отмечаем А(1; 0) – первую точку интегральной кривой;

3. Ищем угол наклона касательной к графику в точке A:

4. Строим касательную l0 в точке А под углом α0;

5. Находим х1 по формуле: xi = х0 + ih, где h – шаг интегрирования

x1 = 1 + 1 · 0,1 = 1,1;

6. Отмечаем середину отрезка x0x1: x0 + h/2, проводим прямую из этой точки до прямой l0, отмечаем точку B(xB; yB);

7. Ищем координаты В:

xB = x0 + h/2 = 1 + 0,1/2 = 1,05

yB = y0 + h/2 · f(x0; y0) = 0 + 0,1/2 · 3 = 0,15

Следовательно, точка B имеет координаты (1,05; 0,15);

8. Ищем угол наклона касательной к графику в точке B:

αB = arctg(f(xB; yB)) = arctg((3 – 0,15)/1,05)) = arctg(2,71) = 70°

9. Строим касательную l1 в точке B под углом αB;

10. Проводим прямую x = x1 = 1,1 до пересечения с прямой l1, отмечаем точку C(x1; y1);

11. Ищем y точки C:

y1 = yB + h/2(f(xB;yB)) = 0,15 + 0,1/2 · 2,71 = 0,29

Следовательно, точка C имеет координаты (1,1; 0,29).

Рисунок 9. Решение задачи методом Эйлера модифицированного.

3. Алгоритм решения задачи.

3. 1. Алгоритмы подпрограмм.

3. 1. 1. Подпрограмма метода Эйлера.

3. 1. 2 Подпрограмма метода Эйлера модифицированного.

3. 1. 3. Подпрограмма общего решения и поиска максимальных значений x и y.

3. 2. Алгоритм функции.

3. 3. Алгоритм программы.

 

4. Форма программы.

 

 5. Листинг программы.

Dim x(), e(), em(), o() As Single

Private i, n As Integer

Private x0, xk, y0, h, miny, maxy, minx, maxx As Single

Function f(x, y) As Single

f = (y + 1) / x

End Function

Private Sub Eiler()

ReDim x(n)

ReDim e(n)

e(0) = y0

For i = 0 To n - 1

x(i) = Round(x0 + (i * h), 3)

e(i + 1) = Round(e(i) + h * f(x(i), e(i)), 3)

Next i

End Sub

Private Sub EilerM()

ReDim x(n)

ReDim em(n)

em(0) = y0

For i = 0 To n - 1

x(i) = Round(x0 + i * h, 3)

em(i + 1) = Round(em(i) + h * f(x(i) + h / 2, em(i) + h / 2 * f(x(i), em(i))), 3)

Next i

End Sub

Private Sub Obshee()

ReDim x(n)

ReDim o(n)

maxy = y0

miny = y0

maxx = x0

minx = x0

For i = 0 To n

x(i) = x0 + (i * h)

c = (y0 + 1) / x0

o(i) = c * x(i) - 1

Next i

End Sub

Private Sub Command1_Click()

x0 = Val(Text1.Text)

y0 = Val(Text2.Text)

xk = Val(Text3.Text)

h = Val(Text4.Text)

n = Round((xk - x0) / h)

MSFlexGrid1.Cols = 4

MSFlexGrid1.Rows = n + 2

MSFlexGrid1.TextMatrix(0, 0) = "x"

MSFlexGrid1.TextMatrix(0, 1) = "Îáùåå ðåùåíèå"

MSFlexGrid1.TextMatrix(0, 2) = "ýéëåð"

MSFlexGrid1.TextMatrix(0, 3) = "Ýéëåð ìîäèô."

Eiler

EilerM

Obshee

For i = 0 To n

MSFlexGrid1.TextMatrix(i + 1, 0) = Str(x(i))

MSFlexGrid1.TextMatrix(i + 1, 1) = Str(o(i))

MSFlexGrid1.TextMatrix(i + 1, 2) = Str(e(i))

MSFlexGrid1.TextMatrix(i + 1, 3) = Str(em(i))

Next i

minx = x(0)

maxx = x(n)

miny = o(0)

maxy = o(n)

If e(n) > o(n) Then maxy = e(n)

If em(n) > o(n) Then maxy = em(n)

If e(n) > em(n) Then maxy = e(n)

Label10.Caption = Str(miny)

Label11.Caption = Str(maxy)

Label8.Caption = Str(minx)

Label12.Caption = Str(maxx)

Picture1.Cls

kx = (3960 - 720) / (xk - x0)

ky = (4200 - 320) / (maxy - miny)

For i = 0 To n - 1

z1 = Round(720 + (x(i) - x0) * kx)

z2 = Round(4800 - (e(i) - miny) * ky)

z3 = Round(720 + (x(i + 1) - x0) * kx)

z4 = Round(4800 - (e(i + 1) - miny) * ky)

Picture1.Line (z1, z2)-(z3, z4), vbGreen

Next i

For i = 0 To n - 1

z1 = Round(720 + (x(i) - x0) * kx)

z2 = Round(4800 - (em(i) - miny) * ky)

z3 = Round(720 + (x(i + 1) - x0) * kx)

z4 = Round(4800 - (em(i + 1) - miny) * ky)

Picture1.Line (z1, z2)-(z3, z4), vbBlue

Next i

For i = 0 To n - 1

z1 = Round(720 + (x(i) - x0) * kx)

z2 = Round(4800 - (o(i) - miny) * ky)

z3 = Round(720 + (x(i + 1) - x0) * kx)

z4 = Round(4800 - (o(i + 1) - miny) * ky)

Picture1.Line (z1, z2)-(z3, z4), vbRed

Next i

End Sub

Private Sub Command2_Click()

End

End Sub

6. Решение задачи в MathCad.

 

 

   Заключение.


tg(α) = f(x,y)

α

Eiler(X0, Xk, Y0, N, Y)

h = (Xk – X0)/N

i = 0, …, N - 1

x = X0 + i ∙ h

Yi+1 = Yi + h ∙ F(x, Yi)

End

End

Yi+1 = Yi + h ∙ F(x + h/2, Yi + h/2 ∙ F(xi, yi))

x = X0 + i ∙ h

i = 0, …, N-1

h = (Xk – X0)/N

EilerM(X0, Xk, Y0, N, Y)

0,33

0.22

0,11

y

x

A

α0

0

l0

B

α1

α

ε

ε1

xi+1

xi

h

h/2

В

С

А

0

y=y(x)

x

y

y

x

Δx

Δy

A

α0

Δx

Δy

l0

0,33

0.22

0,11

0

1,1

1

1,1

С

1

B

αB

Начало

y0, x0,xk,h

n = Round((xk - x0) / h)

MSFlexGrid1.Cols = 4

MSFlexGrid1.Rows = n + 2

MSFlexGrid1.TextMatrix(0, 0) = "x"

MSFlexGrid1.TextMatrix(0, 1) = "y общ"

MSFlexGrid1.TextMatrix(0, 2) = "y эйл"

MSFlexGrid1.TextMatrix(0, 3) = "y эйл Эмод"

Eiler

EilerM

Obhee

z1 = Round(720 + (x(i) - x0) * kx)

z2 = Round(5400 - (em(i) - miny) * ky)

z3 = Round(720 + (x(i + 1) - x0) * kx)

z4 = Round(5400 - (em(i + 1) - miny) * ky)

Picture1.Line (z1, z2)-(z3, z4)

z1 = Round(720 + (x(i) - x0) * kx)

z2 = Round(5400 - (e(i) - miny) * ky)

z3 = Round(720 + (x(i + 1) - x0) * kx)

z4 = Round(5400 - (e(i + 1) - miny) * ky)

Picture1.Line (z1, z2)-(z3, z4)

i = 1, …, n-1

Picture1.Cls

kx = (Picture1.Width - 1200) / (xk - x0)

ky = (Picture1.Height - 1000) / (maxy - miny)

miny

minx

maxy

maxx

i = 1, …, n-1

MSFlexGrid1.TextMatrix(i + 1, 2) = Str(e(i))

MSFlexGrid1.TextMatrix(i + 1, 3) = Str(em(i))

MSFlexGrid1.TextMatrix(i + 1, 1) = Str(o(i))

MSFlexGrid1.TextMatrix(i + 1, 0) = Str(x(i))

i = 1, …, n

z1 = Round(720 + (x(i) - x0) * kx)

z2 = Round(5400 - (o(i) - miny) * ky)

z3 = Round(720 + (x(i + 1) - x0) * kx)

z4 = Round(5400 - (o(i + 1) - miny) * ky)

Picture1.Line (z1, z2)-(z3, z4)

i = 1, …, n-1

Конец

Eiler

ReDim x(n + 1)

ReDim e(n + 1)

e(0) = y0

x(i) = Round(x0 + (i * h), 3)

e(i + 1) = Round(e(i) + h * f(x(i), e(i)), 3)

i = 1, …, n

Конец

Конец

x(i) = Round(x0 + i * h, 3)

em(i + 1) = Round(em(i) + h * f(x(i) + h / 2, em(i) + h / 2 * f(x(i), em(i))), 3)

i = 1, …, n

ReDim x(n + 1)

ReDim em(n + 1)

em(0) = y0

EilerM

Конец

x(i) = Round(x0 + (i * h), 3)

o(i) = Round(2 * (x(i) ^ 3), 3)

If o(i) > maxy Then maxy = o(i)

If o(i) < miny Then miny = o(i)

If x(i) > maxx Then maxx = x(i)

If x(i) < minx Then minx = x(i)

i = 1, …, n

ReDim x(n + 1)

ReDim o(n + 1)

maxy = y0

miny = y0

maxx = x0

minx = x0

Obhee

Конец

MSFlexGrid16

Picture1

f = (3 * b) / a

f(a,b)

Labe71

Text2

Text1

Labe41

Labe31

Label1

Text3

Labe21

Label11

Text4

Command1

Label10

Labe81

Labe91

Label12

α

xi+1

хi

O

x

yi

h

yi+1

y=y(x)

B

e

A

y


 

А также другие работы, которые могут Вас заинтересовать

46623. Эмиль Антуан Бурдель 22.67 KB
  С их подчас неистовой экспрессией Памятник павшим в Монтобане бронза 1893 1902 отмечены дробностью ритмов объёмов усложнённостью общего построения. отличаются единством конструктивности и динамики контрастностью света и тени грубоватоэнергичной обработкой утрированнокрупных плотных форм активностью пространственного построения Геракл стреляющий из лука 1909 Пенелопа 1909 12 Сафо 1924 25 все бронза. Роден бронза 1909; А. Франс бронза 1919 Б.
46624. Методика знакомства с архитектурой как искусством на уроках изобразительного искусства 22.78 KB
  Учебная мотивация – частный вид мотивации включенный в учебную деятельность и определяющий потребность учащегося в получении знаний. Выделяют такие типы мотивации связанной с результатами учения как: мотивация которая условно может быть названа отрицательной. Косвенно об учебной мотивации свидетельствует уровень реальной успешности учебной деятельности. Зная тип мотивации учитель может создать условия для подкрепления соответствующей положительной мотивации.
46626. Основные понятия терминов «Энергосбережение», «энергосберегающая политика государства», «энергоэффективность» 22.93 KB
  Энергоэффективность – это количественная характеристика показатель предполагающий максимальное использование способности энергии совершать работу. Понятие энергии. Энергетические ресурсы – это материальные объекты в которых сосредоточен тот или иной вид энергии пригодной к экономически обоснованной для практического использования на данном этапе развития науки и техники. Топливноэнергетический комплекс Республики Беларусь включает системы добычи транспорта хранения производства и распределения основных видов энергоносителей: природного...
46627. Издательские портфели 23 KB
  не по заказу издательства но которые могут быть приняты к изданию. Состоит из произведений находящихся на разных стадиях производственного процесса до сдачи тиража в книготорговую сеть или поступления его на склад издательства. Портфельный запас обеспечивает нормальную работу издательства и планомерный выпуск книг. Портфельный запас обеспечивающий нормальную работу издательства и планомерный выпуск книг нормативный портфельный запас определяется путем умножения среднего объема однодневного выпуска в целом по издательству или по разделам...
46628. Сучасні лінгвістичні словники як основне джерело фахової та мовної інформації 23 KB
  Сучасні лінгвістичні словники як основне джерело фахової та мовної інформації. Особливу категорію складають лінгвістичні або філологічні словники. Залежно від того з якої точки зору воно розглядається лінгвістичні словники бувають різних типів: тлумачні словники перекладні словники термінологічні етимологічні словники орфографічні словники орфоепічні словники іншомовних історичні діалектологічні фразеологічні словники синонімічні частотні словники власних імен обернені або зворотні словники топонімічні словники. Лінгвістичні...
46629. Fairs and Exhibitions 23 KB
  Every year a lot of international, national and specialized exhibitions and fairs are held in different countries of the world. The number of countries and companies who take part in them is growing from year to year and the scope of fairs and exhibitions is becoming larger
46631. Устойчивость функционирования объектов экономики 23.45 KB
  На устойчивость работы объекта экономики в ЧС влияют: надежность защиты работающих от поражающих факторов; способность объекта противостоять в определенной степени поражающим факторам; защищенность объекта от вторичных поражающих факторов пожаров взрывов заражений СДЯВ затоплений; надежность системы снабжения всем необходимым для производства продукции сырьем топливом электроэнергией водой и т.; устойчивость и непрерывность управления производством; подготовленность объекта к ведению спасательных и неотложных...