9979

Сущность и этапы проектирования РЭС

Реферат

Энергетика

Сущность и этапы проектирования РЭС Сущность процесса проектирования РЭС заключается в разработке конструкций и технологических процессов производства новых радиоэлектронных средств которые должны с минимальными затратами и максимальной эффективностью выполнять

Русский

2013-03-19

92 KB

74 чел.

Сущность и этапы проектирования РЭС

Сущность процесса проектирования РЭС заключается в разработке конструкций и технологических процессов производства новых радиоэлектронных средств, которые должны с минимальными затратами и максимальной эффективностью выполнять предписанные им функции в требуемых условиях. Следует подчеркнуть, что в результате проектирования создаются новые, более совершенные РЭС, отличающиеся от своих аналогов и прототипов более высокой эффективностью за счет использования новых физических явлений и принципов функционирования, более совершенной элементной базы и структуры, улучшенных конструкций и прогрессивных технологических процессов.

По степени новизны проектируемых изделий различают следующие задачи проектирования:

1. Частичная модернизация существующего РЭС (изменение его параметров, структуры и конструкции), обеспечивающая сравнительно небольшое (несколько десятков процентов) улучшение одного или нескольких показателей качества для лучшего решения тех же или новых задач.

2. Существенная модернизация, которая предполагает значительное улучшение (в несколько раз) показателей качества.

3. Создание новых РЭС, основанных на новых принципах действия, конструирования и производства для резкого увеличения (на несколько порядков) показателей качества при решении тех же или существенно новых задач.

Проектирование является сложным многоэтапным процессом, в котором могут принимать участие большие коллективы специалистов, целые институты и научно-производственные объединения, а также организации заказчиков, которым предстоит эксплуатировать разработанную аппаратуру.

С точки зрения последовательности выполнения различают основные стадии проектирования:

1. Предварительное проектирование, результатом которого являются технические предложения (аван-проект). Эта стадия в наибольшей степени насыщена элементами научного поиска, теоретическими расчетами, экспериментальными исследованиями. Они завершаются обычно созданием лабораторных макетов.

2. Эскизное проектирование, результатом которого является эскизный проект. На этой стадии усилия разработчиков во многом направлены на поиски эффективных конструкторских решений. Она также связана с большим объемом теоретических изысканий, сложных расчетов и заканчивается созданием экспериментальною образца проектируемого изделия и его тщательными экспериментальными исследованиями (натурным моделированием).

3. Техническое проектирование, при котором выполняется тщательная проработка всех схемных, конструкторских и технологических решений. На стати технического проектирования создается техническая документация на разрабатываемую аппаратуру и процессы ее производства. Итогом является технический проект, содержащий необходимую документацию и опытный образец изделий, прошедший всесторонние испытания в реальных условиях эксплуатации. Следует подчеркнуть чрезвычайную важность и трудоемкость создания технической документации, на основе которой происходит в дальнейшем единичное, серийное или массовое производство РЭС.

С точки зрения содержания решаемых задач процесс проектирования можно разбить на следующие этапы:

1. Системотехническое проектирование, при котором выбираются и формулируются цели проектирования, обосновываются исходные данные и определяются принципы построения системы. При этом формируется структура проектируемого обьекта, его составных частей, которыми обычно являются функционально завершенные блоки, определяются энергетические и информационные связи между составными частями. В результате формулируются частные технические задания на проектирование отдельных составных частей объекта.

2. Функциональное проектирование, применительно к РЭС называемое также схемотехническим, имеет целью аппаратурную реализацию составных частей системы (комплексов, устройств, узлов). При этом выбирают элементную базу, принципиальные схемы и оптимизируют параметры (осуществляют структурный и параметрический синтез схем) с точки зрения обеспечения наилучшего функционирования и эффективного производства. При выборе элементной базы и синтезе схем стремятся учитывать конструкторско-технологические требования.

3. Конструирование, называемое также техническим проектированием, решает задачи компоновки и размещения элементов и узлов, осуществления печатных и проводных соединений для РЭС всех уровней) (модулей, ячеек, блоков, шкафов), а также задачи теплоотвода. электрической прочности, защиты от внешних воздействий и т.п. При этом стремятся оптимизировать принимаемые решения по конструктивно-технологическим, экономическим и эксплуатационным показателям.

На этом этапе проектирования разрабатывают техническую документацию, необходимую для изготовления и эксплуатации РЭС.

4. Технологическая подготовка производства обеспечивает разработку технологических процессов изготовления отдельных блоков и всей системы в целом. На этом этапе проектирования создается технологическая документация на основе предшествующих результатов. Каждый этап проектирования сводится к формированию описаний проектируемого РЭС, относящихся к различным иерархическим уровням и аспектам его создания и работы.

Этапы проектирования состоят из отдельных проектных процедур, которые заканчиваются частным проектным решением. Типичными для проектирования РЭС процедурами являются анализ и синтез описаний различных уровней и аспектов.

Процедура синтеза заключается в создании проектного решения (описания) по заданным требованиям, свойствам и ограничениям. Например, широко используются при проектировании РЭС процедуры синтеза электронных схем по их заданным характеристикам в частотной или временной области. При этом в процессе синтеза может создаваться структура схемы (структурный синтез), либо определяться параметры элементов заданной схемы, обеспечивающие требуемые характеристики (параметрический синтез).

Процедура анализа состоит в определении свойств заданного (или выбранного) описания. Примерами такой процедуры могут служить расчет частотных или переходных характеристик электронных схем, определение реакции схемы на заданное воздействие и др. Анализ позволяет оценить степень удовлетворения проектного решения заданным требованиям и его пригодность. Процедуры синтеза и анализа в процессе проектирования тесно связаны  между собой, поскольку обе они направлены на создание приемлемого или оптимального проектного решения.

Типичной проектной процедурой является оптимизация, которая приводит к оптимальному (по определенному критерию) проектному решению. Например, широко используется оптимизация параметров электронных схем с целью наилучшего приближения частотных характеристик к заданным. Процедура оптимизации состоит в многократном анализе при целевом изменении параметров схемы до удовлетворительного приближения к заданным характеристикам. В сущности, оптимизация обеспечивает создание (синтез) проектного решения, но включает поэтапную оценку характеристик (анализ).

Проектные процедуры состоят из отдельных проектных операций. Например, в процессе анализа математических моделей РЭС приходится решать дифференциальные и алгебраические уравнения, осуществлять операции с матрицами и т.п. Такие операции могут иметь обособленный характер, но в целом они образуют единую проектную процедуру.

Проектные процедуры и операции выполняются в определенной последовательности, называемой маршрутом проектирования.

Маршруты проектирования могут начинаться с нижних иерархических уровней описаний (восходящее проектирование) либо с верхних (нисходящее проектирование).

Следует особо подчеркнуть, что между всеми этапами проектирования существует глубокая связь и взаимосвязь. Так, определение окончательной конструкции и разработка всей технической документации часто не могут быть выполнены до окончания разработки технологии. В процессе конструирования и разработки технологии может потребоваться коррекция принципиальных схем, структуры системы и даже исходных данных. Поэтому процесс проектирования является не только многоэтапным, но и многократно корректируемым по мере его выполнения, т.е. процесс носит итерационный характер.

В процессе проектирования необходимо не просто создать аппаратуру, которая будет обеспечивать заданное функционирование, но и оптимизировать ее по широкому спектру функциональных, конструкторско-технологических, эксплуатационных и экономических показателей. На отдельных этапах для отдельных частных задач оптимизацию можно осуществить на основе разработанных формальных математических методов. Однако применительно к комплексным РЭС задача оптимизации часто не поддается формализации. Встречаясь с такой ситуацией, разработчики обычно рассматривают несколько вариантов решения поставленной задачи, подсказанных, как правило, предшествующим коллективным опытом, интуицией, и выбирают лучший из них. Такой подход называется эвристическим многовариантным анализом. Однако в связи со все возрастающей сложностью РЭС, с повышением требований к ним необходимые расчеты оказываются все более трудоемкими, а количество вариантов, целесообразных для рассмотрения, катастрофически возрастает. Эта ситуация получила название «тирания альтернатив». Часто на этапе проектирования трудно предвидеть некоторые требования, вытекающие из условий эксплуатации. В результате всего этого создание нового РЭС затягивалось на долгие годы. Представляемые к испытаниям опытные образцы часто оказывались не удовлетворяющими заданным требованиям, а доводка аппаратуры происходила в процессе испытаний, что удорожало проектирование во много раз.

Подобное положение не было виной разработчиков. Это результат возникшего принципиального несоответствия традиционного подхода к проектированию и сложности современных радиоэлектронных средств. Указанное противоречие и вызвало интенсивное развитие новой технологии проектирования РЭС, базирующейся на системном подходе и совершенствовании процессов проектирования с применением математических методов и средств вычислительной техники, комплексной автоматизации трудоемких и рутинных проектных работ, замены макетирования и натурного моделирования математическим моделированием, использованием эффективных методов многовариантного проектирования и оптимизации, а также повышением качества управления проектированием.

Системный подход позволяет найти оптимальное, в широком смысле, решение задачи проектирования за счет всестороннего, целостного рассмотрения как проектируемого изделия, так и самого процесса проектирования и способен привести к подлинно творческим новаторским решениям, включая крупные изобретения и научные открытия.

Главным средством автоматизации проектирования являются ЭВМ и управляемые ими другие технические средства, которые создают необходимую основу для полной реализации потенциальных возможностей системного подхода.

2.  СОСТАВ  И   ПРИНЦИПЫ   ПОСТРОЕНИЯ  САПР

САПР создаются в проектных, конструкторских, технологических организациях и на предприятиях с целью повышения качества, технико-экономической эффективности проектируемых и выпускаемых РЭС, уменьшения затрат на их создание и эксплуатацию, сокращения сроков и трудоемкости проектирования, а также повышения качества проектной документации.

Системы автоматизированного проектирования состоят из совокупности средств методического, математического, лингвистического, программного, технического, информационного и организационного обеспечении.

Методическое обеспечение (МО) САПР включает в себя теорию процессов, происходящих в схемах и конструкциях РЭС, методы анализа и синтеза схем и конструкций радиоэлектронных устройств, систем и их составных частей, их математические модели, математические методы и алгоритмы численного решения систем уравнений, описывающих схемы и конструкции РЭС. Указанные компоненты МО составляют ядро САПР. В методическое обеспечение САПР входят также алгоритмические специальные языки программирования, терминология, нормативы, стандарты и другие данные. Очевидно, что разработка методического обеспечения САПР РЭС требует глубоких специальных знаний в областях радиотехники, электроники, в частности системотехники, схемотехники и микроэлектроники, конструирования и технологии производства РЭС. От сюда вытекает, что разработка методического обеспечения САПР РЭС - прерогатива специалистов в области радиотехники и электроники.

Обычно в качестве обособленных блоков в методическом обеспечении выделяются математическое и лингвистическое обеспечения.

Математическое обеспечение — это совокупность математических моделей, методов и' алгоритмов для решения задач автоматизированного проектирования.

Лингвистическое обеспечение представляет собой совокупность языков, используемых в САПР для представления информации о проектируемых объектах, процессе и средствах проектирования и для осуществления диалога между проектировщиками и ЭВМ.

Если математическое и лингвистическое обеспечения являются полностью самостоятельными в составе САПР, под методическим обеспечением понимается совокупность документов, описывающих состав, правила отбора и эксплуатации средств автоматизированного проектирования.

Компоненты МО создаются на основе перспективных методов проектирования, поиска новых принципов действия и технических решений, эффективных математических и других моделей проектируемых объектов, применения методов многовариантного проектирования и оптимизации, использования типовых и стандартных проектных процедур, стандартных вычислительных методов.

Методическому обеспечению САПР в широком его понимании посвящена основная часть книги.

18Программное обеспечение (ПО) включает в себя документы с текстами программ, программы на машинных носителях (магнитных лентах, дисках и др.) и эксплуатационные документы, обеспечивающие функционирование САПР.

Программное обеспечение подразделяется на общесистемное и прикладное. Компонентами общесистемного ПО являются, например, операционные системы, трансляторы с алгоритмических языков, супервизоры и т.п., то есть совокупность программ, которая осуществляет управление вводом и обработкой информации в ЭВМ, диалоговый режим работы и другие обслуживающие функции независимо от объекта проектирования. Прикладное ПО включает программы и пакеты прикладных программ, предназначенные непосредственно для получения проектных решений. Прикладное ПО разрабатывается обычно совместно специалистами в области проектируемых РЭС и системного программирования.

Техническое обеспечение (ТО) САПР включает в себя устройства вычислительной и организационной техники, средства передачи данных, измерительные и другие устройства или их сочетания.

Информационное обеспечение (ИО) САПР состоит из описания стандартных проектных процедур, типовых проектных решений, типовых элементов РЭС, комплектующих изделий и их моделей, материалов, числовых значений параметров и других данных. Эти данные в закодированной форме записываются на машинных носителях: магнитных лентах и магнитных дисках.

Основное назначение информационного обеспечения САПР - это уменьшение объемов информации, требуемой в процессе проектирования от разработчика РЭС, и исключение дублирования данных в прикладном ПО и ТО САПР.

Данные ИО обычно группируются в отдельные массивы, каждый из которых относится к определенному объекту описания. Такие массивы называются файлами. Вся совокупность файлов образует базу данных, которую можно многократно использовать при проектировании различных РЭС для различных этапов и уровней. Для создания, расширения, корректировки и коллективного использования данных создаются специальные системы управления базами данных (СУБД). Совокупность баз данных, систем управления ими, а также относящихся к ним программных, языковых, технических и организационных средств называется банком данных.

Организационное обеспечение САПР включает методические и руководящие материалы, положения, приказы, инструкции, штатные расписания, квалификационные требования и

другие документы, обеспечивающие необходимую деятельность и взаимодействие различных подразделений организации и отдельных пользователей при создании, эксплуатации и развитии САПР.

Основными структурными звеньями САПР являются подсистемы. Подсистемой называется выделенная по некоторым признакам часть САПР, обеспечивающая получение законченных проектных решений и соответствующих проектных документов. Различают объектно-ориентированные (объектные) и объектно-независимые (инвариантные) подсистемы.

Объектные подсистемы осуществляют непосредственное проектирование. Применительно к САПР, осуществляющим комплексное проектирование РЭС, объектными являются, например, подсистемы схемотехнического и конструкторского проектирования. Для конструкторских САПР объектными являются подсистемы компоновки, размещения, трассировки и т.п.

Инвариантные подсистемы выполняют функции управления и обработки информации, не зависящие от объекта проектирования. Таковыми являются, например, подсистемы управления САПР, диалоговых процедур, оптимизации, подсистемы ввода, обработки и вывода графической информации, подсистемы информационно-поисковых процедур и др.

Каждая подсистема, в свою очередь, состоит из компонентов, объединенных общей для подсистемы целевой функцией. Под компонентом обычно понимают элемент средства обеспечения, выполняющий определенную функцию. Так, например, компонентами подсистемы схемотехнического проектирования являются: методическое обеспечение анализа схем; программы, реализующие те или иные алгоритмы анализа; графические дисплеи, обеспечивающие отображение самих схем и, например, частотных характеристик этих схем; файлы, содержащие модели транзисторов; совокупность их основных характеристик и т.п. Очевидно, что все указанные компоненты связаны между собой внутри подсистемы. На рис. 1.2 приведена обобщенная структурная схема САПР, отражающая ее составные части и связи между ними. На этом рисунке компоненты подсистем обозначены тремя знаками. Первый знак характеризует разновидность обеспечения, к которому относится данный компонент, второй указывает номер компонента для данного вида обеспечения, а третий  к какой подсистеме относится данный компонент, например М1А первый компонент методического обеспечения подсистемы А; И2Н — второй компонент информационного обеспечения подсистемы Н и т.п.

Рис.   1. Обобщенная структурная схема САПР

САПР создается и функционирует в проектной организации как самостоятельная система. Однако она может быть связана с подсистемами и банками данных других автоматизированных систем предприятия: автоматизированной системой управления технологическими процессами (АСУ ТП), автоматизированной системой для научных исследований (АСНИ). В частности, основная задача АСНИ может состоять именно в том, чтобы получать и отрабатывать математические модели для САПР. На крупных предприятиях АСНИ, САПР и АСУ могут функционировать как взаимосвязанные на уровне технических средств и банков данных.

При создании САПР руководствуются следующими общесистемными принципами:

1. Принцип включения состоит в том, что требования к созданию, функционированию и развитию САПР определяются со стороны более сложной системы, включающей в себя САПР в качестве подсистемы. Такой сложной системой может быть, например, комплексная система АСНИ — САПР — АСУ ТП предприятия, САПР отрасли и т.п.

2. Принцип системного единства предусматривает обеспечение целостности САПР за счет связи между ее подсистемами и функционирования подсистемы управления САПР.

3. Принцип комплексности требует связности проектирования отдельных элементов и всего объекта в целом на всех стадиях проектирования.

4. Принцип информационного единства предопределяет информационную согласованность отдельных подсистем и компонентов САПР. Это означает, что в средствах обеспечения компонентов САПР должны использоваться единые термины, символы, условные обозначения, проблемно-ориентированные языки программирования и способы представления информации, которые обычно устанавливаются соответствующими нормативными документами. Принцип информационного единства предусматривает, в частности, размещение всех файлов, используемых многократно при проектировании различных объектов, в банках данных. За счет информационного единства результаты решения одной задачи в САПР без какой-либо перекомпоновки или переработки полученных массивов данных могут быть использованы в качестве исходной информации для других задач проектирования.

5. Принцип совместимости состоит в том, что языки, коды, информационные и технические характеристики структурных связей между подсистемами и компонентами САПР должны быть согласованы так, чтобы обеспечивалось совместное функционирование всех подсистем и сохранялась открытая структура САПР в целом. Так, введение каких-либо новых технических или программных средств в САПР не должно приводить к каким-либо изменениям уже эксплуатируемых средств.

6. Принцип инвариантности предусматривает, что подсистемы и компоненты САПР должны быть по возможности универсальными или типовыми, т.е. инвариантными к проектируемым объектам и отраслевой специфике. Применительно ко всем компонентам САПР это, конечно, невозможно. Однако многие компоненты, например программы оптимизации, обработки массивов данных и другие могут быть сделаны одинаковыми для разных технических объектов.

7. Принцип развития требует, чтобы в САПР предусматривалось наращивание и совершенствование компонентов и связей между ними. При модернизации подсистемы САПР допускается частичная замена компонентов, входящих в подсистему, с изданием соответствующей документации.

Приведенные общесистемные принципы являются чрезвычайно важными на этапе разработки САПР. Контроль за их соблюдением обычно осуществляет специальная служба САПР предприятия.

3. ПРИМЕНЕНИЕ ЭВМ ДЛЯ  АВТОМАТИЗАЦИИ ПРОЕКТИРОВАНИЯ

Различные вычислительные средства уже давно используются специалистами в проектно-конструкторских работах. Быстродействие современных ЭВМ позволяет решать такие задачи, которые в принципе недоступны для «ручных» методов расчета, дает возможность учесть значительно большее число факторов, влияющих на функционирование и производство РЭС, резко повысить число рассматриваемых вариантов при проектировании. С помощью ЭВМ осуществляются анализ и синтез схем, их оптимизация, компоновка и размещение элементов конструкции РЭС, находятся оптимальные варианты электрического соединения элементов (трассировки) и решаются многие другие сложные задачи.

Широко используются автоматизированные средства для подготовки технической документации. Так, для изготовления чертежей и описательных документов (электрических схем, сборочных чертежей, таблиц соединений, спецификаций) применяются специальные чертежные автоматы, графопостроители и алфавитно-цифровые печатающие устройства, управляемые с помощью ЭВМ.

На первом этапе применения ЭВМ для автоматизации проектирования дело сводилось к решению частных задач проектирования, носивших главным образом расчетный характер. Для каждой задачи строилась ее математическая модель, выбирался численный метод и разрабатывался алгоритм решения. На основе алгоритма создавалась программа на одном из алгоритмических языков. Полученные от ЭВМ результаты подвергались необходимой обработке «вручную».

Однако при описанном «позадачном» подходе к автоматизации ЭВМ решают весьма ограниченный круг вопросов, не соответствующий их потенциальным возможностям, по существу отсутствует взаимодействие разработчиков с ЭВМ, не учитывается сильная взаимосвязь между различными этапами и уровнями проектирования.

Так, этап конструкторского проектирования часто сводится к решению задач, оторванных от электрической природы аппаратуры и ее функционирования. Критерии оптимизации конструкции в большинстве случаев не учитывают функциональных факторов. В то же время электромагнитные связи элементов конструкции существенно проявляются во многих случаях на функционировании РЭС.

С другой стороны, схемотехнический этап проектирования во многих случаях не учитывает конструкторско-технологических, эксплуатационных и экономических факторов. В результате этого разрыва спроектированная аппаратура по эффективности оказывается далекой от оптимальной, хотя на каждом этапе принимаются меры и затрачиваются большие интеллектуальные и материальные средства на оптимизацию.

При традиционном методе вмешательство проектировщика в автоматические процедуры проектирования не предусматривается, хотя это может обеспечить значительный эффект.

Все эти трудности и противоречия привели к необходимости решения задач автоматизации проектирования на основе системного подхода как в части его организации, так и в части аппаратных вычислительных средств и их программно-математического обеспечения. Это породило новый этап автоматизации проектирования—этап создания систем автоматизированного проектирования (САПР).

Каковы основные черты систем автоматизированного проектирования и их принципиальные отличия от «позадачных» методов автоматизации?

Первой характерной особенностью является возможность комплексного решения общей задачи проектирования, установления тесной связи между частными задачами, т.е. возможность интенсивного обмена информацией и взаимодействие не только отдельных процедур, но и этапов проектирования. Например, применительно к техническому (конструкторскому) этапу проектирования САПР позволяет решать задачи компоновки, размещения и трассировки в тесной взаимосвязи, которая должна быть заложена в технических и программных средствах системы.

Применительно к системам более высокого уровня можно говорить об установлении тесной информационной связи между схемотехническим и техническим этапами проектирования. Такие системы позволяют создавать радиоэлектронные средства, более эффективные с точки зрения комплекса функциональных и конструкторско-технологических требований.

Вторым отличием САПР является интерактивный режим проектирования, при котором осуществляется непрерывный процесс диалога «человек — машина». Сколь ни сложны и изощренны формальные методы проектирования, сколь ни велика мощность вычислительных средств, невозможно создать сложную аппаратуру без творческого участия человека. Системы автоматизации проектирования по своему замыслу должны не заменять конструктора, а выступать мощным средством обеспечения его творческой деятельности.

Третья особенность САПР заключается в возможности имитационного моделирования радиоэлектронных систем в условиях работы, близких к реальным. Имитационное моделирование дает возможность предвидеть реакцию проектируемого объекта на самые различные возмущения, позволяет конструктору «видеть» плоды своего труда в действии без макетирования. Ценность этой особенности САПР заключается в том, что в большинстве случаев крайне трудно сформулировать системный критерий эффективности РЭС. Эффективность связана с большим числом требований различного характера и зависит от большого числа параметров РЭС и внешних факторов. Поэтому в сложных задачах проектирования практически невозможно формализовать процедуру поиска оптимального по критерию комплексной эффективности решения. Имитационное моделирование позволяет провести испытания различных вариантов решения и выбрать лучший, причем сделать это быстро и учесть всевозможные факторы и возмущения.

Четвертая особенность заключается в значительном усложнении программного и информационного обеспечения проектирования. Речь идет не только о количественном, объемном увеличении, но и об идеологическом усложнении, которое связано с необходимостью создания языков общения проектировщика и ЭВМ, развитых банков данных, программ информационного обмена между составными частями системы, программ проектирования, коррекции работы машины, ее обучения, систематизации и обобщения опыта, усовершенствования стратегии принятия решений.

Пятая особенность заключается в значительном усложнении технических средств САПР. Системы автоматизации проектирования требуют применения машин высокой производительности, многомашинных комплексов, разветвленной системы периферийных устройств, в частности устройств отображения информации, диалога и изготовления документации.

И наконец, последняя особенность САПР, которую можно отметить, заключается в замкнутости процесса автоматизированного проектирования. Под этим подразумевается, что проектировщик вводит в машину информацию на уровне замысла, а в результате диалогового процесса проектирования машина выдает технические решения и документацию, необходимую для изготовления РЭС и автоматизированного управления технологическими процессами ее производства.


 

А также другие работы, которые могут Вас заинтересовать

57679. Veterans Day 188.5 KB
  Veterans Day is observed with ceremonies at war monuments and cemeteries throughout the nation. Almost every village has a monument to veterans who served in one of the country’s wars.
57680. ЗІРКИ МУЗИКИ 108.5 KB
  It’s true because we can’t imagine our life without music. People all over the world are fond of music. They listen to music, they dance to music, they learn to play musical instruments. People make their own music too.
57681. The Beauty of Future Cities 40.5 KB
  Show the students some photos of the future cities. It can be initial slides of your power point presentation and ask them to guess what the theme of the lesson is. Right you are. Today we are going to have a talk about megacities of today and their future.
57682. Books are Our Friends. The World of Books 44.5 KB
  Objectives: Pupils’ learning outcomes: practical to present and give practice in the use of new words; will learn 8 new words; to present and give practice in the use of “be fond of”, will be able to express their attitude to reading and “be interested in” in the micro dialogues...
57683. Великобританія 59 KB
  So, we have refreshed our knowledge about our topic and it’s time for you to represent your own information about traditions in Great Britain. It was your home task for today.
57684. Favourite Clothes 116 KB
  Materials: a student book, pictures of clothes, cards with the names of clothes, cards with the task for reading, cards for practicing the phrasal verbs, pictures of three persons and cut sentences with their descriptions.
57685. The Earth does not belongs to us we belong to the Earth 36.5 KB
  The aim of the lesson: to develop the logical thought creative abilities, interest to learning English to our planet, to teach pupils to keep the environment clean. Equipment: pictures, songs, drawings, computers, CD, the song – M. D. “Save the Earth”
57687. Мої улюблені страви 43.5 KB
  Teacher: Very good! Я хочу дізнатися, про ваші вподобання на обід. Look at the blackboard, please (слайд 10). Використовуйте фрази «I like... for dinner», «I don`t like... for dinner». Але тепер вам треба пригадати назви продуктів за їхніми малюнками, які ви бачите на дошці.